GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2022 FORMAL LANGUAGE AND AUTOMATA THEORY

TIME ALLOTTED: 3 Hrs

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

IT403

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: 10×1=10

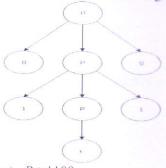
			Marks	CO No	
1.	(i)	For a give Moore Machine, Given Input='101010', thus the output would be of	1	CO4	
		length: a) Input +1			
		b) [Input]			
		c) [Input-1]			
		d) Cannot be predicted			
				San Co	
	(ii)	The compatibility graph is used in searching for	1	CO2	
		a) Minimal closed covering			
		b) All incompatible pairs c) Minimum number of edges			
		d) Both (a) and (c)			
		d) Both (a) and (c)			
	(iii)	The regular expression representing the set of all strings {x, y} ending with XX &	1	CO3	
		beginning with Y			
		a) $XX(X+Y)*Y$			
		b) Y(X+Y)*XX			
		c) YY(X+Y)*X			
		d) Y(XY)*XX			
	(iv)			CO ₃	
		a) aabbbb			
		b) aabbaa			
		c) aaabbb d) bbaaaa			
		d) bbadad			
	(v)	I	CO2		
		a) R=QP*			
		b) P=RQ*			
		c) R=Q*P			
		d) None of the above			
	(vi)	(vi) In Moore machine if the input string is of length n then output string is of length –			
	W C. EX	a) n		CO2	
		b) n/2			
		c) n+1			
		d) 2n			

(vii) According to the given table, compute the number of transitions with 1 as its symbol but not 0:

1 CO2

Q	Δ(q,0)	δ(q,1)	
q0	{q0}	{q0, q1}	
q1	{q2}	[q2]	
q2	{q3}	{q3}	
q3	Φ	Φ	

- a) 4
- b) 3
- c) 2
- d) 1
- (viii) A grammar G=(V, T, P, S) is ______ if every production taken one of the two forms:


1 CO3

B->aC

B->a

- a) Ambiguous
- b) Regular
- c) Non Regular
- d) None of the mentioned
- (ix) Which of the following does the given parse tree correspond to?

1 CO5

- a) P->1100
- b) P->0110
- c) P->1100E
- d) P->0101
- (x) A context free grammar is a

CO4

- a) English grammar
- b) Regular grammar
- c) Context sensitive grammar
- d) None of the mentioned
- (xi) Which among the following looks similar to the given expression? ((0+1), (0+1)) * 1 CO2
 - a) $\{x \in \{0,1\} * | x \text{ is all binary number with even length} \}$
 - b) $\{x \in \{0,1\} | x \text{ is all binary number with even length} \}$
 - c) $\{x \in \{0,1\} * | x \text{ is all binary number with odd length} \}$
 - d) $\{x \in \{0,1\} | x \text{ is all binary number with odd length} \}$

CO No

Marks

- (xii) In Moore machine, output is produced over the change of:
 - a) Transitions
 - b) States
 - c) all of the mentioned
 - d) none of the mentioned

GROUP – B (Short Answer Type Questions) Answer any *three* from the following: 3×5=15

3 CO1 Convert the following Moore machine into Mealy machine: (a) **NEXT STATE** OUTPUT PRESENT a=0a=1STATE $\rightarrow q_1$ Q2 91 0 93 q_2 91 93 q_3 91

(b) Simplify the given grammar:

S->aXb

X->aXb | e

3. (a) Consider the following grammar: $S \rightarrow 0B/1A$, $A \rightarrow 0/0S/1AA$, $B \rightarrow 1/1S/0BB$.

For the string 00110101.
Find the leftmost derivation

(b) Draw the derivation tree for the above derivation. 2 CO2

4. (a) Consider the following CFG:
 S → aaB, A → bBb/ε, B → Aa.

Find the parse tree for the string "aabbababa"

(b) What is Ambiguous grammar? 1 CO3

(b) What is Ambiguous grammar? 1 CO3

Construct a minimum state automaton equivalent to a DFA whose transition table is 5 CO1 given below (where q₃ and q₄ are two final states):

Present	Next State		
State	a=0	a=1	
$\rightarrow q_0$	qı	q ₂	
q_1	q ₄	q ₃	
q_2	q ₄	q ₃	
q_3	q ₅	q ₆	
q_4	q ₇	q_6	
q ₅	q_3	q ₆	
96	96	96	
97	q_4	96	

6. State and Prove the Arden's Theorem. 5 CO3

CO2

GROUP - C (Long Answer Type Questions) Answer any three from the following: 3×15=45

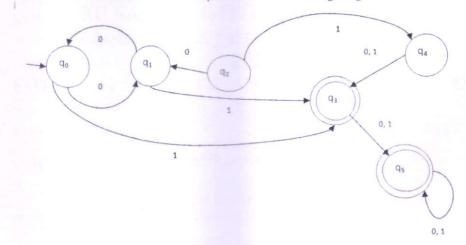
			Marks	CO No
7.	(a)	Prove that $(1+00*1) + (1+00*1) (0+10*1)* (0+10*1) = 0*1(0+10*1)*$.	4	CO3
	(b)	Define Left factoring & Left recursion with proper example.	5	CO1
	(c)	Convert the following grammar to GNF S \rightarrow AB, A \rightarrow BS/a, B \rightarrow SA/b	6	CO4
8.	(a)	Find the equivalence class partition of the machine shown below:	9	CO2

PRESENT	NEXT STATE, z		
STATE	x=0	x=1	
A	E,0	D,1	
В	F,0	D,0	
C	E,0	B,1	
D	F,0	B,0	
Е	C,0	F,1	
F	B,0	C,0	

Show a standard form of the corresponding reduced machine for the above machine (b) CO4

9. Convert the following Mealy machine into Moore machine (a)

PRES	NEXT STATE				
ENT		a=0	a=		
STAT E	STAT E	OUTPUT	STATE	OUTPU T	
$\rightarrow q_1$	q_3	0	q_2	0	
q_2	qı	1	Q4	0	
q ₃	q_2	1	q_1	1	
q ₄	94	1	93	0	


Consider the following table and find a minimum length sequence that (b) CO₂ distinguishes state A from state B.

PRESENT _	NEXT STATE, z		
STATE	x=0	x=1	
A	B,1	H,1	
В	F,1	D,1	
C	D,0	E,1	
D	C,0	F,1	
E	D,1	C,1	
F	C,1	C,1	
G	C,1	D,1	
Н	C,0	A,1	

6

COL

(c) Minimize the states in the DFA depicted in the following diagram:

10.	(a)	Find the CFG for the given Language: $L=\{x\in\{0,1\}* \text{number of zeroes in }x=\text{number of one's in }x\}$	5	CO5
	(b)	Construct a push down automata for the language $L=\{ww^{R} \mid w \in \{a,b\}^*\}$	6	CO3
	(c)	Using Pumping Lemma check whether $L=\{a^n\ b^n\ \ n\ge 1\}$ is regular or not.	4	CO3
11.		Write short notes on any three of the followings:	3x5=15	
	(a)	Ambiguity and Inherent Ambiguity	5	CO4
	(b)	Turing machine	5	COI
	(c)	Pumping lemma for Regular Set	5	CO2
	(d)	Classification of languages and their relations	5	CO2
	(e)	Merger Graph	5	CO3