

GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

COMPILER DESIGN CS604A

TIME ALLOTTED: 3HR

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

	the work and test from the following, encosing the correct alternative of each question	Marks	CO No.
1. (i)	Which of the following error will not be detected by the compiler?	1	CO1
	a) Lexical error		
	b) Syntactic error		
	c) Semantic error		
	d) Logical error		
(ii)	From $X \to YZ$ production rule, FIRST(X) is	1	CO ₃
	a) FIRST(Y)		
	b) $FIRST(Y) \cup FIRST(Z)$		
	c) $FIRST(Y) \cup FIRST(Z)$ if $FIRST(X)$ contains ε else $FIRST(Y)$		
	d) FIRST(Z)		
	· ·		
(iii)	lastpos of concatenate node with left child c1 and right child c2 is	1	CO ₂
	a) lastpos(c1) ∪ lastpos(c2)		
	b) $lastpos(c1) \cap lastpos(c2)$		
	c) if $(\text{nullable}(c1))$ lastpos $(c1) \cup \text{lastpos}(c2)$ else lastpos $(c2)$		
	d) if (nullable(c2)) lastpos(c1) U lastpos(c2) else lastpos(c2)		
(iv)	A given grammar is not LL(1) if the parsing table of a grammar may contain	1	CO3
	a) any blank field		
	b) duplicate entry of same production		
	c) more than one production rule in a cell		
	d) any field mentioned as error		
(v)	In a programming language, an identifier is permitted to be a letter followed by any number	1	CO4
	of letter followed by any number of letter or digits. If L and D denote the set of letters and		
	digits respectively. Which of the following expressions defines an identifier?		
	a) (L D) +		
	b) I. (I. D)*		

- b) L. (L | D)*
- c) (L.D)*
- d) L(L.D)*

B.TECH/CSE/EVEN/SEM-VI/CS604A/R18/2022

(vi)	Which of the following software tool is a lexical analyzer generator? a) Lex b) Yacc	1	CO2
	c) Both Lex and Yacc d) Neither Lex nor Yacc		
(vii)	Which of the following statements is false? a) An unambiguous grammar has same left most and right most derivation b) An LL(1) parser is a top-down parser c) An LR(1) parser is a bottom-up parser d) An ambiguous grammar can never be LR(k) for any k	1	CO3
(viii)	Which one of the following is a top-down parser? a) Recursive descent parser b) Operator precedence parser c) An LR(k) parser d) An LALR(k) parser	1	CO3
(ix)	Which of the following grammar rules violate the requirements of an operator grammar? P, Q, R are non-terminals and r, s, t are terminals. 1. $P \rightarrow Q R$ 2. $P \rightarrow Q s R$ 3. $P \rightarrow \epsilon$ 4. $P \rightarrow Q t R r$	1	CO3
	 a) 1 only b) 1 and 3 only c) 2 and 3 only d) 3 and 4 only 		
(x)	Annotated Parse tree is generated in the phase of a) Syntax Analysis b) Semantic Analysis c) Code Optimization d) Intermediate Code Generation	1	CO3
(xi)	Consider the given below SDT:	1	CO ₃
	P1: $S \rightarrow MN \{S.val = M.val + N.val\}$ P2: $M \rightarrow PQ \{M.val = P.val * Q.val and Q.val = P.val\}$		
	Select the correct option:		
	a) Both P1 and P2 are S attributed b) P1 is S attributed and P2 is L-attributed c) P1 is L attributed but P2 is not L-attributed d) Both P1 and P2 are L attributed		

B.TECH/CSE/EVEN/SEM-VI/CS604A/R18/2022

	(xii)	Three Address code involves	1	CO4
		a) At least 3 addresses		COT
		b) At most 3 addresses		
		c) Exactly 3 addresses		
		d) Ternary operator		
		GROUP – B		
		(Short Answer Type Questions)		
		(Answer any three of the following)	3×5	= 15
			Marks	CO No.
2.		Write down the output of each phase for the expression	5	CO1
		a:=b+c*70		
2	×	[Assume a, b and c are real numbers]		
3	a)	What is a handle?	2	CO3
	1.5			
	b)	Consider the Grammar	3	CO3
		$E \to E + E \mid E * E \mid id$		
1		Find the handles of the right sentential forms of reduction for the string id*id+id		
4.	a)	What is an operator grammar? Give an example.	2	CO3
	b)	Consider the following conditional statement:	3	CO4
		if($z>4$) then $y=z+1$ else $y=10$;		
20		From the above statements how many tokens are possible and what are they?		
5	a)	Eliminate left-recursion from the following grammar:	3	CO3
		$S \rightarrow Bb \mid a$		
	1.5	$B \rightarrow Bc \mid Sd \mid e$		
	b)	Consider the following grammar G:	2	CO3
		$A \rightarrow aAB \mid aBc \mid aAc$		
		Find an equivalent left-factored grammar of the above grammar.		
6		Generate an annotated parse tree for the string "4+5-2" using the grammar:	5	CO3
		$E \rightarrow E+T \mid E-T \mid T$		
		$T \rightarrow 0 \mid 1 \mid 2 \mid 3 \mid 4 \mid 5 \mid 6 \mid 7 \mid 8 \mid 9$		
		CROUP, C		
		GROUP - C		
		(Long Answer Type Questions)	1	v 15 - 15
		(Answer any three of the following)	3	$\times 15 = 45$
			Marks	CO No.
7.	a)	Construct an ε-NFA from the following regular expression:	3	CO ₂
		$L = (a \mid b) *abb$		
	b)	Construct the equivalent DFA of that ε-NFA.	10	CO ₂
	c)	What are the analysis phase and synthesis phase of a compiler?	2	CO ₁
8.	a)	Construct a LL(1) Parsing Table for the following grammar:	10	CO3
		$S \rightarrow aCDb$		
		$\mathrm{C} ightarrow \mathrm{c} \mid \mathrm{\epsilon}$		
	g: 4:	$D \rightarrow d \mid \epsilon$		
	b)	Explain the LL(1) Parser's action by describing the moves it would make on an in	nput 5	CO3
		acdb\$		

B.TECH/CSE/EVEN/SEM-VI/CS604A/R18/2022

9.	a)	Compute the collection of sets of LR(0) item sets for the following grammar. $E \to E+T \mid T$ $T \to T^*F \mid F$ $F \to a$	10	CO3
	b)	Construct the SLR parsing table using the SLR algorithm.	5	CO ₃
10.	a)	Translate the expression	8	CO ₂
		a = -b * (c + d / b) - (e * f)		
		into i) Quadruple ii) Triple iii) Indirect Triple iv) iv) 3-address code		
	b)	Construct the DAG for the following basic block	5	CO ₂
	c)	d:= b*c e:= a+b b:= b+c a:= e-d	2	CO2
		Translate the expression $a*(b+c/d)$ into syntax tree.		
11.		Write short notes on any three of the following:	$3\times 5=15$	
	a)	Lex	5	CO ₂
	b)	Context Free Grammar	5	CO ₃
	c)	Parse Tree	5	CO3
	d)	L-attributed Syntax Directed Definition	5	CO4
	e)	Principle of sources of code optimization Unary Operators	5	CO4