GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2021

CONTROL SYSTEM – II EE603

TIME ALLOTTED: 3HR

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

			Marks	CO No.
1.	(i)	The Z transform of a function is $\frac{z}{z-1}$, then the laplace transform of the function is a) 1 b) $\frac{1}{s}$ c) $\frac{1}{s-a}$	1	CO2
	(ii)	d) none of these Which one of the following statements regarding the state transition matrix is Correct a) $\Phi(0) = 0$ b) $\Phi^{-1}(t) = (\frac{1}{t})$	1	CO1
	(iii)	c) $\Phi(t_1 + t_2) = \Phi(t_1) + \Phi(t_2)$ d) $\Phi(t_2 - t_1) \Phi(t_1 - t_0) = \Phi(t_2 - t_0)$. In series RLC circuit the number of state-variables is a) 3 b) 2	1	CO1
	(iv)	 c) 1 d) none of these. Z transform of an impulse function is a) 1 b) 0 	1	CO2
	(v)	c) infinity d) none of these The faithful reconstruction of a signal on account of sampling is obtained if a) $\omega_s = \omega_1$ b) $\omega_s \ge 2\omega_1$	1	CO2
	(vi)	c) $\omega_s \leq \omega_1$ d) $\omega_s \leq 2\omega_1$ The region of convergence of $f(k)=a^k$ for $k \geq 0$ is a) $ z >a$	1	CO2
		$b) z < a$ $c) z \ge a$ $d) z \le a$		

CO2
CO2
CO2
CO3
CO3
G02
CO3
rks CO No.
CO2
002
CO1
COI
CO2
, -
CO3
5

Obtain inverse z transform of the following using partial function 5 CO₁ 6. method:

GROUP - C (Long Answer Type Questions)

		Answer any <i>three</i> from the following: $3 \times 15 = 45$		
			Marks	CO No.
7.	(a)	Determine the amplitude and frequency of the limit cycle of the non-linearity shown in figure below: $G(s) = \frac{10}{s(s+1)(s+2)} C(s)$	10	CO3
	(b)	Explain Jury's stability test in brief.	5	CO2
8.	(a)	Check the controllability and observability of a system having following coefficient matrices. $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}.$	8	CO1

- 7 CO₁ (b) Obtain the time response of the system given below: $\dot{X} = AX$. Where, $A = \begin{bmatrix} 0 & 1 \\ -2 & 0 \end{bmatrix}$; $\mathbf{x}(0) = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ and $y = [1 -1] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$.
- 9. A DC armature controlled velocity mechanism has the only 7 CO7 (a) controlled variable as the angular velocity of the motor shaft. Derive a state-space model for the plant by clearly defining the relevant parameters and variables.
 - Determine the pulse transfer function and stability of the CO₂ (b) 8 sampled data control system shown in Fig. 1for sampling time T = 0.5 second.

Fig. 1. Closed loop discrete time control system

10. An ON-OFF device drives a system having a transfer function as 8 CO₃ (a) shown in the figure below. Show that in assuming describing function of the ON-OFF device error due to fifth harmonic is only 0.8% of the actual output.

B.TECH/EE/EVEN/SEM-VI/EE603/R18/2021

	(b)	The system is given by, $\dot{x}_1 = x_2$ and $\dot{x}_2 = -x_1 - x_2^3$.	6	CO3
		Investigate the stability of the system by Lyapunov's method using $v = x_1^2 + x_2^2$.		
11.	(a)	Data Acquisition System	5	CO2
	(b)	Controllability & Observability test	5	CO1
	(c)	Liapunov's first and second method for determining the stability of nonlinear systems.	5	CO3