GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

Control System – II EE603

TIME ALLOTTED: 3HR

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: 10×1=10

			Marks	CO No
1.	(i)	A system is represented by a single input, 3 state variables and 2 outputs. The matrix C should have an order of	1	COL
		a) 2×1		
		b) 2×3		
		c) 3×2		
		d) none of these		
	(ii)	Which of the following is categorized as memory type nonlinearity:	1	COI
		a) backlash		
		b) dead zone		
		c) ideal relay		
		d) saturation		
	(iii)	Phase plane analysis is generally restricted to	1	CO3
	()	a) Second order system	1	003
		b) Third order system		
		c) First order system		
		d) Any order system		
	(iv)	0 2	7	002
	(10)	The Eigen values of the matrix $A = \begin{bmatrix} 0 & 2 \\ 2 & 0 \end{bmatrix}$ is	1	CO2
		a) 2, -2		
		b) 2j, -2j		
		c) -2, -2		
		d) 2, 2		
	(v)	The point $(-1+j2)$ in the s-plane is mapped in the z plane. The location of the point	1	CO1
		is 1	,	COI
		a) inside the unit circle		
		b) outside the unit circle		
		c) on the unit circle		
		d) can't be placed in Z plane		
		a) can toe placed in 2 plane		

B.TECH/EE/EVEN/SEM-VI/EE603/R18/2022

(vi)	The faithful reconstruction of a signal on account of sampling is obtained if a) $\omega_s = \omega_1$	1	CO4
	b) $\omega_s \ge 2\omega_1$		
	c) $\omega_s \leq 2\omega_1$		
(5.33)	d) None of these	1	004
(vii)	Z Transform of unit step sequence is	l	CO4
	a) $\frac{z}{z+1}$		
	b) $\frac{z}{z-1}$		
	c) 1		
	d) None of these		
(viii)	Lyapunov function is	1	CO ₃
	a) energy function		
	b) work function		
	c) state function		
	d) output function		
(iv)	The example of positive and deficits function is	1	CO3
(ix)	The example of positive semi definite function is $(x_1 + x_2)^2$	1	COS
	a) $(x_1 + x_2)^2$ b) $x_1^2 + x_2^2$		
	$(x_1 + x_2)^2$		
	c) $-x_1^2 - (x_1 + x_2)^2$ d) $x_1x_2 + x_2^2$		
	3) 3(32 32		
(x)	Describing function analysis is based on	1	CO ₃
	a) harmonic linearization		
	b) system linearization		
	c) degree of non-linearity		
	d) input-output ratio based on 2nd harmonic		
(xi)	The describing function for Ideal relay with input $X \sin \omega t$ is	1	CO ₃
	a) $\frac{4M}{X}$		
	b) $\frac{2M}{2}$		
	πX		
	c) $\frac{4M}{\pi X}$		
	d) none of these		
(xii)	Jury's stability test is carried out to check the stability of a	1	CO4
	a) discrete time system		
	b) linear time invariant system		
	c) linear time variant system		
	d) non linear system		
	GROUP – B (Short Answer Type Questions)		
	Answer any <i>three</i> from the following: $3 \times 5 = 15$		
		Marks	CO No
	Obtain state model of the system given by the following transfer function using	5	CO ₂
	Direct Decomposition method.		
	$\frac{Y(s)}{U(s)} = \frac{s+2}{s^5 + 5s^2 + 3s + 5}$		
		- 4	000
	Justify that when a transistor circuit is operated only in Cut-off and saturation zone it behaves like a simple relay	5	CO ₃

2.

3.

- 4. Show that the following quadratic form is positive definite 5 CO3 $V(X) = 8x_1^2 + x_2^2 + 4x_3^2 + 2x_1x_2 - 4x_1x_3 - 2x_2x_3$
- 5. Solve the following differential equation: 5 CO₄
 - x(k+2) + 3 x(k+1) + 2 x(k) = 0.given, x(0) = 0; x(1) = 1
- 6. Obtain the state equation of the given electrical network in the standard form. CO1

GROUP - C (Long Answer Type Questions)

Answer any three from the following: 3×15=45

CO No Marks Determine the pulse transfer function and stability of the sampled data control 7. (a) 8 CO4 system shown in Figure for sampling time T = 0.5 second.

(b) For a discrete time system 7 CO4

x(k+2) + 5x(k+1) + 6x(k) = u(k)

Find the State Transition Matrix.

8. (a) Check the controllability and observability of the system CO₂

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 5 \\ 0 & -1 & -4 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}; C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}; D = 0$$

(b) Consider a system defined by COL

where
$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix} B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

It is desired to have eigen values at

$$s_1$$
, $s_2 = -2 \pm j4$ and $s_3 = -10$.

By using state feedback control u = -kx, Determine the necessary feedback gain matrix (k) and the control signal (u).

9. (a) Consider a Spring Mass system as shown in figure where k = m = 1. Determine the CO₃ Differential equation for the system and sketch the phase portrait of the system by using method of Isocline.

B.TECH/EE/EVEN/SEM-VI/EE603/R18/2022

	(b)	State Lyapunov's main Stability Theorem.	5	CO ₃
	(c)	Test if the following quadratic function $V(x)$ is positive definite. Given $V(x) = 9x_1^2 + 4x_2^2 + x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3$.	4	CO3
10.	(a)	Determine the describing function of the non-linear element shown in the figure having a dead zone followed by linear characteristics.	7	CO3

(b) Determine the amplitude and frequency of the limit cycle of the non-linearity shown 8 CO3 in Figure. The describing function of an ideal relay is given by

GD $(X, j\omega) = \frac{4\pi v}{\pi x}$ and angle 0° (zero degree).

11. Write short notes on the following: (Any three) 3x5 = 155 Sampling Process CO4 (a) (b) Aliasing effect in discrete time signal 5 CO3 5 (c) Limit Cycle CO₃ 5 CO₃ (d) Jump Resonance