GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

DATA STRUCTURE

CS302

TIME ALLOTTED: 3Hours

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

Marks CO No

CO4

- 1. (i) Which of the following is/are linear data structures?

 - a. Tree
 - b. Graphs
 - c. Queue
 - d. Table
 - ii) What does the following function do for a given Linked List with first node as CO₂

void fun1(struct node* head)

if(head == NULL) return;

funl(head->next); printf("%d ", head->data);

- a. Prints all nodes of linked lists
- b. Prints all nodes of linked list in reverse order
- c. Prints alternate nodes of Linked List
- d. Prints alternate nodes in reverse order
- iii) Which of the following statement(s) about stack data structure is/are 1 CO₄ NOT correct?
 - a. Linked List are used for implementing Stacks
 - b. Top of the Stack always contain the new node
 - c. Stack is the FIFO data structure
 - d. Null link is present in the last node at the bottom of the stack
- iv) In a complete k-ary tree, every internal node has exactly k children or no child. CO₄ The number of leaves in such a tree with n internal nodes is:
 - a. Nk
 - b. (N-1)K+1
 - c. n(k-1)+1
 - d. n(k-1)

B.TECH/CSE/ODD/SEM-III/ CS302/R21/2022

v)	Binary search tree has best case run-time complexity of O(log n). What could the worst case?	1	CO2
	a. O(n)		
	b. O(n ²)		
	$c. O(n^3)$		
	d. None of these		
vi)	In order traversal of binary search tree will produce –	1	CO4
	a. unsorted list		
	b. reverse of input		
	c. sorted list d. none of the above		
			201
vii)	Interpolation search is an improved variant of binary search. It is necessary for		CO4
	this search algorithm to work that— a. A Data collection should be in sorted form and equally distributed.		
	b. Data collection should be in sorted form and but not equally		
	distributed. c. Data collection should be equally distributed but not sorted.		
	d. None of these		
	d. None of these		
viii)	The height of a binary tree is the maximum number of edges in any root to leaf path. The maximum number of nodes in a binary tree of height h is:	1	CO4
	a. 2^h -1		
	b. 2^(h-1)-1		
	c. 2^(h+1)-1		
	d. 2*(h+1)		
ix)	What is the value of the postfix expression 6 3 2 4 $+-*$?	1	CO3
14)	a. 1		
	b. 40		
	c. 74		
	d18		
		1	CO1
X)	The concept of order (Big-Oh) is important because		
	a. It can be used to decide the best algorithm that solves a given problem		
	b. It determines the maximum size of a problem that can be solved in a		
	given system, in a given amount of time		
	c. It is the lower bound of the growth rate of the algorithm		
	d. Both A and B		
xi)	The following sequence of operations are performed on a stack	1	CO3
(1)	PUSH(10), PUSH(20), POP, PUSH(10), PUSH(20), POP, POP, POP,		
	PUSH(20), POP		
	The sequence of values popped out is:		
	a. 20, 10, 20, 10, 20		
	b. 20, 20, 10, 10, 20		
	c. 10, 20, 20, 10, 20		
	d. 20, 20, 10, 20, 10		

B.TECH/CSE/ODD/SEM-III/ CS302/R21/2022

xii)	N elements of a queue are to be reversed using another queue. The number of "ADD" and "REMOVE" operations required to do so is	1	CO3
	a. 2*N		
	b. 4*N		
	c. N d. the task can't be performed		
	d. the task can t be performed		
	GROUP - B		
	(Short Answer Type Questions)		
	(Answer any <i>three</i> of the following) 3 x 5	i = 15 Marks	CO No
2. a)	Differentiate linear data structures from nonlinear data structures with suitable	3	COI
2. 4)	examples.		
b)	Justify that a queue can be considered as a priority queue.	2	CO1
3.	front=3, rear=5	5	CO3
	Queue=_, _ ,2, 4 ,5, _, _ (_ states for empty cell) • 6 is added		
	Two elements are deleted		
	• 10 and 12 added		
	Two elements are deleted		
	• 2 and 3 are added.		
	(i) What is the final value of front and rear for the following operation for		
	straight queue? (ii) What is the final value of front and rear for the following operation for		
	circular queue?		
4.	Convert the following infix expression into equivalent postfix expression and	5	CO3
	evaluate the postfix expression with these following values:		
	((((a+b)/c)*d)/(e+f*g)) - (h/i-j) a=10, b=8, c=3, d=4, e=2, f=1, g=6, h=55, i=11, j=5.		
	4 10, 0 6, 0 5, 0 4, 0 2, 1 1, 5 0, 11 55, 1 11, 5 0.		
5.	Create a B-tree of order 3 from the following lists of data items:	5	CO4
	16, 20, 22, 42, 12, 30, 32, 18, 10, 34, 36, 38, 14, 24, 28, 40, 26.		
	Clearly mention all the steps.		
6.	Construct a binary tree from the following information:	5	CO4
	In-order: 50, 10, 30, 90, 60, 80, 40, 20, 70		
	Pre-order: 60, 10, 50, 90, 30, 40, 80, 70, 20		
	Mention each step clearly. What is the post order traversal of this tree?		
	GROUP - C		
	(Long Answer Type Questions)		
	(Answer any <i>three</i> of the following) $3 \times 15 = 45$	Martin	CON
7. a.	Construct an AVL tree mentioning each step clearly:	Marks 5	CO No
/ . a.	12, 11, 13, 10, 9, 15, 14, 18, 7, 6, 5, 22, 20, 9 and 4.		

B.TECH/CSE/ODD/SEM-III/ CS302/R21/2022

5 CO₄ Insert the following numbers in an empty BST: 40, 25, 70, 22, 35, 60, 80, 90, 10, 30. Draw the tree and perform the following operations (not successively) i) Delete 30 ii) Delete 80 iii) Delete 40 5 CO₃ Compare and contrast between. Singly and Doubly linked list. B tree and B+ tree ii) Show the working of Kruskal's Algorithm for finding MST on the following CO₂ graph: CO₅ 10 b. Find the BFS and DFS traversal of this following tree: 5 CO3 What do you mean by Max Heap? Explain with a suitable example. Create a Heap when the values 100, 200, 10, 30, 60, 80, 90 & 300 are entered. CO₂ 5 Write an algorithm for the Selection Sort algorithm. 5 CO4 5 CO₅ What is sparse matrix? Explain various types of sparse matrix. 10 a. What is a Double Linked List? What are the advantages and disadvantages of 5 CO₂ Double Linked List? Write an algorithm to insert a data element after a particular data element in a 5 CO₃ singly linked list. 3x5 = 15Write Short note: (Any three) 11. Recursion Vs Iteration 5 CO3 a. 5 CO2 AVL tree 5 CO3 c. Red/Black tree Asymptotic Analysis of Algorithms. 5 CO1 d. CO4 Quick Sort