GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT 2021

DATA STRUCTURE AND ALGORITHM (Backlog) CS(FT)615A

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

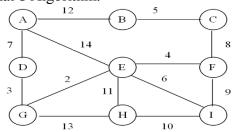
GROUP – A (Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

1 1110	01 0011	The state of the s		.1 10
			Marks	CO No
1.	i)	No of edges in a complete connected graph is a) 2n+2 b) 2 ⁿ - 2	1	CO3
	ii)	c) n ² -2 d) n(n-1)/2 How many swaps are required to sort the given array using bubble sort - { 2, 5, 1, 3, 4}	1	CO2
	iii)	 a) 4 b) 5 c) 6 a) 7 The result of evaluating the postfix expression 5, 4, 6, +, *, 4, 	1	CO2
	,	9, 3, /, +, * is? a) 600 b) 350 c) 650 d) 588		
	iv)	Time complexity of quick Sort in average case is a) O (n2) b) O (n log n) c) O (log n) d) None of these	1	CO4
	v)	Stack is also called as a) Last in first out b) First in last out c) Last in last out d) First in First Out	1	CO5
	vi)	Infix notation for the postfix expression AB+C*D/ a. (A+B)/D*C b. (A+B)*C/D c. B-C*D+A d. None of these	1	CO2

vii)	Maximum no of nodes in a binary tree of depth 5 is a) 31	1	CO2
	b) 16		
	c) 32		
	d) 15		
viii)	The initial configuration of a queue is a, b, c, d, ('a' is in the	1	CO2
	front end). To get the configuration d, c, b, a, one needs a minimum of		
	a) 2 deletions and 3 additions		
	b) 3 deletions and 2 additions		
	c) 3 deletions and 3 additions		
	d) 3 deletions and 4 additions		
ix)	A binary tree is balanced if the difference between left and	1	CO2
	right sub-tree of every node is not more thana) 1		
	b) 3		
	c) 2		
	d) 0		
x)	What is the postfix form of the following prefix *+ab-cd	1	CO1
	a) ab+cd-*		
	b) abc+*-		
	c) ab+*cd- a) none of these		
xi)	Consider the following operation performed on a stack of size	1	CO 3
111)	5. Push(1); Pop(); Push(2); Push(3); Pop(); Push(4); Pop();	•	202
	Pop(); Push(5);		
	After the completion of all operation, the number of elements		
	present in stack are		
	a) 1		
	b) 2 c) 3		
	d) 4		
xii)	A normal queue, if implemented using an array of size MAX	1	CO3
,	gets full when		
	a) Rear = $MAX - 1$		
	b) Front = $(rear + 1) mod MAX$		
	c) Front = rear + 1d) Rear = front		
	d) Rear = Iron		
	GROUP – B		
	(Short Answer Type Questions)		
	Answer any <i>three</i> from the following: $3 \times 5 = 15$		GO N
	Convert the following infiv expression into agriculant neetly	Marks 5	CO No
	Convert the following infix expression into equivalent postfix expression using stack. $(A + B) *C + (D / E) +F - G *H$	3	CO3
	In a two dimensional array $15X12$ with each element	5	CO2
	occupying 2 bytes of memory with the address of the first	-	202
	element [1, 1] is 2000. Find the address of [9, 8] for both Row-		
	major and Column-major cases.		
	Write down the algorithm to solve the game 'Tower of Hanoi'.	5	CO3

2.


3.

4.

B. TECH/FT/EVEN/SEM-VI/CS(FT)615A/R16/2021

5.		Write an algorithm or function to insert one node at beginnin of the linked list.	g 5	CO4
6.		Write an algorithm to print the elements in reverse order usin linked list.	g 5	CO2
		GROUP – C		
		(Long Answer Type Questions)		
		Answer any <i>three</i> from the following: $3 \times 15 = 45$	Marks	CO No.
7.	a)	Write down the algorithm of quick sort.	7	CO4
	b)	Write an algorithm or function to delete the element from simple queue.	5	CO1
	c)	Discuss about Linear Probing.	3	CO2
8.	a)	The in-order and post-order traversal sequence of nodes in a binary tree are given below In-order: - B E D F A G C I H	6	CO3
		Post-order:- E F D B G I H C A Construct the tree		
	b)	What is the difference between tree and graph? What is spanning tree?	3	CO5
	c)	Construct a AVL tree from the given data: 12, 13, 10, 9, 8, 5, 1, 16, 18, 20, 17	6	CO3
9.	a)	Evaluate the expression-using prefix. $(10*5+6) / 8+ (5+7*3) / 6+2 / 4$	7	CO1
	b)	Write an algorithm to insert a node at the beginning of a circular linked list.	5	CO2
	c)	If N_0 be the total no of leaf nodes and N_2 be the no of nodes having two children in a binary tree, then prove that: $N_2 = N_0$ -1.	3	CO2
10.	a)	Show each step to construct a min heap from the following numbers in the order in which they are given:	5	CO1
	b)	 20, 50, 12, 15, 61, 21, 18, 28, 25, 7, 19, 2. a) Show the stages in growth of 5 order B-tree when the following keys are inserted in the given order: 16, 20, 22, 42, 12, 30, 32, 18, 10, 34, 36, 38, 14, 24, 28, 	8	CO1
		40, 26		
	c)	What is Input Restricted De-queue?	2	CO2

11. a) Find out the minimum spanning tree in the given graph by Kruskal's Algorithm.

b) Built a weight balanced tree from the followings:

7	7	$\mathbb{C}($	\mathbf{O}	5	

W1	W2	W3	W4	W5	W6	W7	W8	W9
7	10	11	4	5	8	9	11	16