GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

DATA STRUCTURE AND ALGORITHM IT304

TIME ALLOTTED: 3Hours

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

	F	Answer any <i>ten</i> from the following, choosing the correct alternative of each question	n: 10×1=10 Marks	CO No
1.	i)	Linked List is a	1	CO3
		a) Linear data structure		
		b) Dynamic data structure		
		c) Self referential data structure		
		d) All of these		
	ii)	For the tree below, write the post-order traversal	1	CO5
		0 0		
		0000		
		a) 4, 5, 2, 6, 7, 3, 1		
		b) 2, 3, 4, 5, 6, 7, 1		
		c) 4, 5, 6, 7, 2, 3, 1		
		d) 1, 2, 3, 4, 5, 6, 7		
	iii)	The worst case complexity of binary search for a list having a n elements is	1	CO3
		a) $\log 2^n$		
		b) n log 2 ⁿ c) n		
		d) d) n^2		
		u) u) ii		
	iv)	If the elements '1', '2', '3' and '4' are added in a stack, so what would be the order for the removal?	1	CO2
		a) 1234		
		b) 2134		
		c) 4321		
		d) d) None of the above		
		d) Notice of the above		
	v)	Which of the following statements for a simple graph is correct?	1	CO2
		a) Every path is a trail		
		b) Every trail is a path		
		c) Every trail is a path as well as every path is a trail		
		d) Path and trail have no relation		

B.TECH/IT/ODD/SEM-III/IT304/R21/2022

vi)	If there's no base criteria in a recursive program, the program will a) not be executed	1	CO3
	b) execute until all conditions match		
	c) execute infinitely		
	d) obtain progressive approach		
vii)	Using division method, in a given hash table of size 157, the key of value 172 be placed at position	1	CO2
	a) 7 b) 15		
	c) 72		
	d) 57		
viii)	What is the postfix form of the following prefix *+ab-cd	1	CO4
	a) ab+cd-*		
	b) abc+*- c) ab+*cd-		
	d) none of these		
	d) holle of these		
ix)	Consider the following operation performed on a stack of size 5. Push(1); Pop(); Push(2); Push(3); Pop(); Push(4); Pop(); Pop(); Push(5); Pop(); After the completion of all operation, the number of elements present in stack are	1	CO3
	a) 1		
	b) 2		
	c) 3		
	d) 4		
x)	Any node is the path from the root to the node is called a) Successor Node	1	CO3
	b) Ancestor node		
	c) Internal node		
	d) None of the above		
xi)	The minimum number of stacks required to implement a queue is	1	CO2
AI)	a) 1		002
	b) 2		
	c) 3		
	d) 4		
xii),	Time complexity of quick Sort in average case is	1	CO ₄
	a) (n^2)		
	b) (n log n)		
	c) (log n)		
	d) None of these		

B.TECH/IT/ODD/SEM-III/IT304/R21/2022

GROUP - B

		(Short Answer Type Questions)		
		(Answer any three of the following) 3 x	5 = 15	
2.		Why do you think that I I I I I I I I I I I I I I I I I I I	Marks	CO No
		Why do you think that a doubly linked list is better than a single linked list, justify with the help of examples.	5	CO3
3.		In a two-dimensional array 18 X15 with each element occupying 4 bytes of memory with the address of the first element [1, 1] is 5000. Find the address of [10, 8] for both Row-major and Column-major cases.	5	CO2
4.		Simulate the Insertion Sort algorithm and show the step-by-step procedure to sort the given data values: 23, 11, 37, 28, 15, 19, 55, 9.	5	CO2
5.		Explain Kruskal's Algorithm with example.	5	CO2
6.		Write an algorithm to delete the element in the circular queue.	5	CO3
		GROUP – C		
		(Long Answer Type Questions)		
		(Answer any three of the following)	$3 \times 15 = 4$	5
			Marks	CO No
7.	a)	If N_0 be the total number of leaf nodes and n_2 be the total number of nodes having two children in a binary tree, then prove that $N_2 = N_0 - 1$.	3	CO4
	b)		8	CO3
	c)	Write down the algorithm of push operation of stack.	4	CO2
8.	a)	What do you mean by hashing?	5	COI
	b)	What is collision? Explain different collision resolution techniques with examples	5	CO2
	c)	Explain Primary clustering and Secondary clustering problem and give a useful solution.	5	CO2
9.	a)	Sort the following data using Quick Sort technique (Show intermediate results): 65, 70, 75, 80, 85, 60, 55, 50, 45	7	CO3
	b)	Explain hash function.	5	CO1
	c)	Draw the binary expression tree that represents the following postfix expression: A B + CD * +	3	CO2

B.TECH/IT/ODD/SEM-III/IT304/R21/2022

