GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT 2022

DIGITAL ELECTRONICS EE403

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: 10×1=10

		Marks	CO No.
(i)	Gray code for (1011) ₂ is a) 1000	1	COI
	b) 1101		
	c) 1110		
	d) None of these		
(ii)	The SOP form of logical expression is most suitable for designing log	ic 1	CO2
	circuits using only		
	a) XOR gates		
	b) AND gates		
	c) OR gates		
	d) NAND gates		
(iii)	D-flip flop can be used as	1	CO3
	a) Divider circuit		
	b) Delay switch		
	c) Differentiator		
	d) None of these		
(iv)	A 4-stage ripple counter counts upto	1	CO3
	a) 12		000
	b) 10		
	c) 15		
	d) 4		
(v)	The 9's complement representation of (3465) is	1	CO2
	a) 6534		
	b) 5346		
	c) 4536		
	d) 3456		
(vi)	The fastest logic gate family is	1	CO4
	a) CMOS	*	004
	b) ECL		
	c) TTL		
	d) RTL		

B.TECH/EE/EVEN/SEM-IV/EE403/R18/2022

(vii)	The minimum number of NAND gates required to design one full adder circuit is	t 1	CO2
	a) 9		
	b) 8		
	c) 10		
	d) none of these		
(viii)	2's complement of 1010111 is	1	CO2
	a) 0101001		
	b) 0110110		
	c) 0101100		
	d) 0101101		
(ix)	The SR latch consists of	1	CO4
	a) 1 input		
	b) 3 inputs		
	c) 2 inputs		
	d) 4 inputs		
(x)	A code converts circuit to the another code	1	CO4
	a) Encoder		
	b) Decoder		
	c) Both a and b		
	d) Code converter		
(xi)	In a J-K flip-flop, if J=K the resulting flip-flop is referred to as	1	CO3
	a) D Flip-Flop		
	b) S-R Flip-Flop		
	c) S-K Flip-Flop		
	d) T Flip-Flop		
(xii)	What type of register would shift a complete binary number in one bit at a time and shift all the stored bits out one bit at a time?		CO3
	a) SIPO b) PIPO		
	c) SISO		
	d) PISO		
	GROUP – B (Short Answer Type Questions) Answer any <i>three</i> from the following: 3×5=15		
		Marks	CO No.
	Realize EX-OR gate using NAND gate.	5	CO2
	Apply De-morgan's theorem	5	CO ₂
	(i) $\overline{A + B + C}$ $\overline{(ii)} A + B + CD$ Write the logic gate diagram of 1*4 Demultiplexer.	5	CO3
	Perform the following operations:	5	CO2
	(i) Convert Decimal 928 into Hexa decimal (ii) Convert Hexa decimal 7AC .39 to the Binary (iii) Subtract 1101 from 1111 using 2's complement	3	CO2
	Minimize the following boolean function- using Kmap $F(A, B, C, D) = \Sigma m(0, 1, 2, 3, 5, 7, 8, 9, 10, 13, 15)$	5	CO1

2.

4.

6.

GROUP - C (Long Answer Type Questions) Answer any *three* from the following: 3×15=45

				Marks	CO No.
7.	(a)	circuits?	6	CO3	
	(b)	Simplify f = A'BC' + AB'C + ABC using: (a) Sum of minterms. (b) Maxterms			CO2
8.	(a) Describe the bidirectional shift register with the help of circuit diagram.				CO3
	(b)	The figure below shows a full adder truth table		10	CO3
		Inputs Outputs			
		A B C _{in} Sum Carry			
		0 0 0 0			
		0 0 1 1 0			
		0 1 0 1 0	-		
		0 1 1 0 1 1 0 0 1 0			
		1 0 1 0 1	-		
		1 1 0 0 1			
		1 1 1 1			
9.	(a) (b) (c) (a)	 (ii) Construct a full adder using combination of AND, XOR and OR gates. Design a Master Slave Flip-flop and discuss its operation. Using only one 4:1 MUX, implement the function F (A, B, C) = A + BC+A'B'C' Explain the working of 4 bit PISO shift register with logic diagram and truth table. What is counter? Differentiate Synchronous and Asynchronous counters. 			CO3 CO4 CO4
	(b)	5	CO2		
	(c)	5	CO3		
11.		Write short notes on any three of the following		3x5 = 15	
	(a)	Decoder		5	CO3
	(b)	D/A & A/D Converters		5	CO4
	(c)	TTL		5	CO4
	(d)	5	CO2		
	(e)	C, D) = Σ m(1, 2, 6, 7, 13, 14, 15) + d(0, 3, 5, 12) Design a 4 bit up down counter.		5	CO4