GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT 2021

DIGITAL SIGNAL PROCESSING EE605A

TIME ALLOTTED: 3HR

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

•		Marks	CO No
1. (i)	The digital system in $y(n) = n.x(n)$ is	1	CO2
	a) linear and causal.		
	b) linear and non causal.		
	c) non linear and causal.		
	d) non linear and non causal.		
(ii)	The Z-transform of $a^n u[-n-1]$ is	1	CO2
	a) $1/(1-aZ^{-1})$		
	b) Z/(a-Z)		
	c) a1/[aZ(1-Z ⁻¹)]		
	d) (1+aZ-1)		
(iii)	The ROC of an infinite causal sequence is the	1	CO2
	a) interior of a circle.		
	b) exterior of a circle.		
	c) entire z plane except $z = 0$.		
	d) entire z plane except $z = \infty$.		
(iv)	The s plane and z plane are related as	1	CO2
	a) $z = e^{sT}$		
	b) $z = e^{2sT}$		
	c) $z = 2e^{sT}$		
	d) $z = e^{sT}/2$		
(v)	Zero padding of a signal	1	CO4
	a) reduces aliasing.		
	b) increase time resolution.		
	c) increase frequency resolution.		
	d) has no effect.		
(vi)	DFT is applied to	1	CO1
	a) Infinite sequences		
	b) Continuous finite sequences		
	c) Finite discrete sequences		
	d) Periodic continuous time signals	1	007
(vii)	FIR filter is	1	CO5
	a) recursive and linear.		
	b) non recursive and linear.		
	c) recursive and non linear.		
	d) none of these.		

B.TECH/EE/EVEN/SEM-VI/EE605A/R18/2021

(viii)	For rectangular window used for designing FIR filters, the peak amplitude of the side lobe is a) -41 dB	1	CO5
	b) - 3 dB c) 0 dB d) - 13 dB		
(ix)	Overlap save method is used to find a) circular convolution.b) linear convolutionc) DFT	1	CO4
(x)	 d) Z- transform. The speech signal is obtained after a) Analog to digital conversion b) Digital to analog conversion c) Modulation 	1	CO5
(xi)	 d) Quantization Poles of Butterworth filter lie on a) Circle b) Ellipse 	1	CO3
(xii)	 c) Circle and Ellipse d) none of these. Infinite memory system is also known as a) FIR system b) IIR system c) Digital system 	1	CO3
	d) Analog system GROUP – B (Short Answer Type Questions) Answer any <i>three</i> from the following: 3×5=15		
		Marks	CO No
	Find the DFT of the sequence $x(n) = \{1,1,0,0\}$	5	CO1
	For the following system determine whether it is linear, causal and time invariant $y(n) = x(n) + 3u(n-1)$	5	CO2
	What do you mean by Quantization and how it affects on digital filter?	5	CO4
	Find the circular convolution using concentric circle method of the two finite duration sequence $x_1(n) = \{1,-1,-2,3,-1\}$ and $x_2(n) = \{1,2,3\}$.	5	CO4
	A DTLTI system with impulse response $h[n]=\{1,1,1\}$ is excited by a sequence $x[n]=\{4,3,2,1\}$. Determine the output $y[n]$ of the system.	5	CO2
	GROUP – C		
	(Long Answer Type Questions) Answer any <i>three</i> from the following: 3×15=45		
		Marks	CO No.
(a)	Prove that the energy of a real valued energy signal is equal to the sum of the energies of the	4	CO1

3.

4.

5.

6.

7.

B.TECH/EE/EVEN/SEM-VI/EE605A/R18/2021

even and odd components i.e. $E_s = E_e + E_o$ (b) Find the inverse transform of 6 CO₂ $X(z) = \frac{z}{3z^2 - 4z + 1},$, where the ROC is (a) |z| > 1, (b) |z| < (1/3), (c) (1/3) < |z| < 1(c) If $x(n) = \{1, -2, 1\}$ and $h(n) = \{1, 1, 1, 1, 1, 1, 1\}$, then 5 CO₂ find x(n)*h(n) using Z-transform method. 8. 8 CO₄ (a) $x(n) = \{1,2,-1,2,3,-2,-3,-1,1,1,2,-1\}, h(n) = \{1,2\}.$ Using linear convolution find y(n). i. ii. Compare the result by solving the problem using overlap add method. Determine the inverse Z-transform of 7 CO₂ (b) $X(z) = \frac{z+2}{2z^2 - 7z + 3}.$ If the ROCs are a. |z| > 3, b. $|z| < \frac{1}{2}$, c. $\frac{1}{2} < |z| < 3$. 9. (a) Using linear convolution find y(n) = x(n)*h(n) for 10 CO₃ the sequence x(n) = (1,2,-1,2,3,-2,-3,-1,1,1,2,-1). and the impulse response of the system is h(n) = (1,2). Compare the result by solving the problem using (a) Overlap -save method (b) Overlap-add method. (b) Write short notes on the following: (Any one) 5 CO2,CO1 i. Recursive and non-recursive systems. ii. Aliasing and sampling rate in signal processing. TMS320C 5416/6713 processor iii. 10. Design a Butterworth Filter using Impulse 10 CO₅ (a) invariant method for the following specifications. Given T = 1 sec. $0.8 \le |H(e^{j\omega})| \le 1$ $0 \le \omega \le 0.2\pi$ $|H(e^{j\omega})| \le 0.2$ $0.6\pi < \omega < \pi$ Find the order of the Butterworth Filter that has a -CO₃ (b) 5 2 dB passband attenuation at a frequency of 20 rad/sec and -10 dB stopband attenuation at 30 rad/sec. 11. A lowpass filter is to be designed with the 10 CO₅ (a) following desired frequency response $H_d(e^{j\omega}) = e^{-j2\omega}$ $-\pi/4 \le \omega \le \pi/4$ $\pi/4 < \omega < \pi$ Determine the filter coefficient $h_d(n)$ if the window function is defined as $0 \le n \le 4$ w(n) = 1

B.TECH/EE/EVEN/SEM-VI/EE605A/R18/2021

= 0 otherwise

Also determine the frequency response $H(e^{j\omega})$ of the designed filter.

(b) Given sequences $x_1(n) = \{1,2,3,1\}$ and $x_2(n) = 5$ CO1, $\{4,3,2,2\}$, find $x_3(n)$ such that $X_3(k) = X_1(k) X_2(k)$ CO4