GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

DISCRETE MATHEMATICS M(CSE) 301

TIME ALLOTTED: 3HR

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

1. (i)	The subgroup of the multiplicative group $\{1, -1, i, -i\}$ is a) $\{1, i\}$ b) $\{i, -i\}$ c) $\{1, -1, i\}$ d) $\{1, -1\}$	Marks 1	CO No CO2
(ii)	The number of pendant vertices of binary tree having n vertices is a) $\frac{n}{2} + 1$ b) $\frac{n}{2} - 1$ c) $\frac{1}{2}(n+1)$ d) none of these	1	COI
(iii)	In the set of all real numbers the relation ρ is defined as $a\rho_b$ hold if a-b < 3. Then ρ is a) reflexive b) antisymmetric c) transitive d) none of these	1	CO2
(iv)	Let G be a graph with 12 vertices and 20 edges. Then the number of chords of spanning tree of G is a) 8 b) 9 c) 11 d) none of these	1	CO3
(v)	The quotient group of a normal subgroup H of G is collection of all a) subgroup of H b) cosets of H c) elements in G - H d) subsets of G	. 1	COI
(vi)	$\sim (\sim p \lor \sim q) \equiv$ a) $(\sim p \lor \sim q)$ b) $(\sim p \land \sim q)$ c) $(p \land q)$ d) none of these	1	CO3

B.TECH/CSE/ODD/SEM-III/M(CSE)301/R21/2022

	(vii)	A simple connected graph has a) no parallel edges b) no loops c) no parallel edges and no loops d) no isolated vertex	1	СО
	(viii)	Every integer n is relatively prime to a) 1 b) 0 c) 2	1	CO2
		d) None of these		
	(ix)	If $a_n = a_{n-1} + 9$, $n \ge 1$ and $a_0 = 5$ then $a_n = a$. a) $9+5n$ b) $5+9n$ c) $9n$ d) $5n$	1	CO3
	(4)	The sample of the control of the con		CO2
	(x)	The sum of the degrees of all vertices of the graph is 30. Then the number of edges is a) 20 b) 15 c) 10	1	CO3
		d) none of these		100
	(xi)	The remainder when the sum 4!+5!+6!++50! Is divided by 4 is a) 1 b) 2	1	CO3
		c) 3 d) 0		
	(xii)	The number of minimal elements of POSet $< Z, ' \le ' >$ is a) 0 b) 1 c) 2 d) 3	1	CO4
		GROUP – B (Short Answer Type Questions) Answer any <i>three</i> from the following:3×5=15		
2.		Prove that the inverse of each element of a group is unique.	Marks 5	CO No CO4
3.		Find number of divisors of 11250.	5	CO3
4		Show that $\{(p \land \sim q) \to r\} \to \{p \to (q \lor r)\}$ is a tautology.	5	CO4
5.		Among 50 students in a class, 26 passed in first semester and 21 passed in second semester examinations. If 17 did not pass in either semester, how many passed in both the semester?	5	CO3
6		Prove that for a complete graph G with n vertices has $\frac{n(n-1)}{2}$ number of edges.	5	CO3

B.TECH/CSE/ODD/SEM-III/M(CSE)301/R21/2022

GROUP - C

(Long Answer Type Questions)
Answer any *three* from the following:3×15=45

-			Marks	CO No
7.	(a)	Find generating sequence corresponding to the function $\frac{3x^3}{1}$	5	CO3
		1-x		
	(b)	Draw the incidence matrix of the following graph	5	CO3

(c)	Prove that in a group (G, \circ) , $(a \circ b)^{-1} = b^{-1} \circ a^{-1} \ \forall a, b \in G$ i.e. the	5	CO4
	inverse of the product of two elements of a group G is the product of the		
	inverse taken in the reverse order		
(-)	202		

8. (a)	Show that $3^{302} \equiv 4 \pmod{5}$	8	CO3
(b)	Find the gcd(595,252) and express it in the form 252m+595n.	7	CO3

Apply Dijkstra's Algorithm to determine a shortest path from a to f (a) CO3 of the following graph.

	(0)	Draw Hasse diagrams of the posets (S,\leq) for $S=\{2,4,5,6,10,12,20,25\}$ where	6	CO4
		≤ be a partial ordering relation defined on S such that a≤b iff a divides b		
10.	(a)	Draw the graph $K_{2,3}$. Hence draw the complement of the graph.	7	CO2
	(b)	Find the principal disjunctive normal form and principal conjunctive normal form of the following statement formula	8	CO2
		$P(p,q,r) = (q \lor (p \land q)) \land \sim ((p \lor r) \land q)$		

Using Kruskal's Algorithm find the minimals spanning tree and the corresponding cost of the following graph:

9 CO3

- (b) A tree T has four vertices of degree 2, three vertices of degree 3 and three vertices of degree 4. How many vertices of degree 1 does it have?
- 6 CO3