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Basic Functional Unit  

  

Figure 1: Expanded structure of IAS computer or Von Neumann architecture  

1. MBR (Memory Buffer Register):   
MBR is a two-way register that holds the data fetched from memory and ready for the CPU 
to process or the data waiting to be stored in memory.  

2. MAR (Memory Address Register): MAR specifies the address in memory of the word to be 
written from or read into the MBR.  

3. IR (Instruction Register): IR contains the 8-bit op-code instruction being executed.  

4. IBR (Instruction Buffer Register): IBR is employed to hold temporarily the right-hand 
instructions from a word in memory.  

5. PC (Program Counter): PC is an counter that contains the address of the next instruction-
pair to be fetched from memory to be executed.  
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6. AC and MQ (Accumulator and Multiplier Quotient): AC and MQ are employed to hold 
temporarily operands and results of ALU operations.  

  
Harvard Architecture:  

  

Figure 2 Harvard Architecture  

The Harvard architecture is a computer architecture with physically separate storage and signal 
pathways for instructions and data. The term originated from the Harvard Mark I relay-based 
computer, which stored instructions on punched tape (24 bits wide) and data in electromechanical 
counters. These early machines had data storage entirely contained within the central processing 
unit, and provided no access to the instruction storage as data. Programs needed to be loaded by an 
operator; the processor could not initialize itself. Today, most processors implement such separate 
signal pathways for performance reasons, but actually implement a modified Harvard architecture, 
so they can support tasks like loading a program from disk storage as data and then executing it.  

Contrast with von Neumann architectures   

In a system with a pure von Neumann architecture, instructions and data are stored in the same 
memory, so instructions are fetched over the same data path used to fetch data. This means that a 
CPU cannot simultaneously read an instruction and read or write data from or to the memory. In a 
computer using the Harvard architecture, the CPU can both read an instruction and perform a data 
memory access at the same time, even without a cache. A Harvard architecture computer can thus 
be faster for a given circuit complexity because instruction fetches and data access do not contend 
for a single memory pathway.  

Also, a Harvard architecture machine has distinct code and data address spaces: instruction address 
zero is not the same as data address zero. Instruction address zero might identify a twenty-four bit 
value, while data address zero might indicate an eight-bit byte that is not part of that twenty-four bit 
value.  

Contrast with modified Harvard architecture   
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A modified Harvard architecture machine is very much like a Harvard architecture machine, but it 
relaxes the strict separation between instruction and data while still letting the CPU  
concurrently access two (or more) memory buses. The most common modification includes separate 
instruction and data caches backed by a common address space. While the CPU executes from cache, 
it acts as a pure Harvard machine. When accessing backing memory, it acts like a von Neumann 
machine (where code can be moved around like data, which is a powerful technique). This 
modification is widespread in modern processors, such as the ARM architecture, Power Architecture 
and x86 processors. It is sometimes loosely called a Harvard architecture, overlooking the fact that 
it is actually "modified".  

BUS Architecture Fundamentals  

What is Computer Bus: The electrically conducting path along which data is transmitted inside any 
digital electronic device. A Computer bus consists of a set of parallel conductors, which may be 
conventional wires, copper tracks on a PRINTED CIRCUIT BOARD, or microscopic aluminum 
trails on the surface of a silicon chip. Each wire carries just one bit, so the number of wires 
determines the largest data WORD the bus can transmit: a bus with eight wires can carry only 8-bit 
data words, and hence defines the device as an 8-bit device.  

Types of Computer Bus  

There are a variety of buses found inside the computer.  

Data Bus: The data bus allows data to travel back and forth between the microprocessor (CPU) and 
memory (RAM).  

Address Bus: The address bus carries information about the location of data in memory.  

Control Bus: The control bus carries the control signals that make sure everything is flowing 
smoothly from place to place.  

ALU Design:  

An arithmetic logic unit, or ALU (sometimes pronounced "Al Loo"), is a combinational network 
that implements a function of its inputs based on either logic or arithmetic operations. ALUs are at 
the heart of all computers as well as most digital hardware systems. In this section, we learn how 
to design these very important digital subsystems.  
  
A Sample ALU  

An n-bit ALU typically has two input words, denoted by A = An - 1, , A0 and B = Bn - 1, , B0. The 
output word is denoted by F = Fn, Fn - 1, , F0, where the high-order output bit, Fn, is actually the 
carry-out. In addition, there is a carry-in input C0.  
  
Besides data inputs and outputs, an ALU must have control inputs to specify the operations to be 
performed. One input is M, a mode selector. When M = 0, the operation is a logic function; when 
M = 1, an arithmetic operation is indicated. In addition, there are operation selection inputs, Si, 
which determine the particular logic or arithmetic function to be performed.  
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Figure 3: Simple ALU functions  

To make the discussion more concrete, Figure 3 contains the specification of a simple ALU bit slice, 
that is, the behavior of a single bit of the ALU. The list of operations is partitioned into three sections: 
logic operations, arithmetic operations where the carry-in is 0, and arithmetic operations where the 
carry-in is 1. Some of the operations do not appear to be useful, such as the sum of B and the ones 
complement of A. However, if we set carry-in to 1, we obtain a very useful operation indeed: B 
minus A (B plus the 2’s complement of A).   
  
Implementation of an ALU: ALUs are relatively simple to implement: design a 1-bit slice and 
cascade as many of these as you need to build a multi-bit structure. Of course, the limiting 
performance factor will be the propagation of carries among the ALU stages.  
  
Using the specification of Figure 3, a single bit slice has six inputs, Ai, Bi, Ci, M, S1, and S0, and 
two outputs, Fi and Ci+1.  
  
In ALU design, different arithmetic and logic operations are included. Among arithmetic operations, 
addition, subtraction, multiplication, division, exponentiation etc. are included. Among logical 
operations, AND, OR, NOR, NAND, XOR, XNOR, Left/ Right Shift operations, Rotate operation 
etc. are included.  
  
Addition: Boolean Equations:    =           ,   =    + (     )   

  

Figure 4 Circuit of Full Adder  
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Here,   =   and   =   .  

  

Figure 5 4 bit Parallel Adder  

In Figure 5, 4 bit parallel adder using the adder shown in Figure 4 is shown. 

Algorithm: (VHDL code) library IEEE;  

use IEEE.STD_LOGIC_1164.ALL;  

entity adder4bit is generic(N : integer := 4); 

port(a,b : in std_logic_vector(N-1 downto 0);     

r : out std_logic_vector(N downto 0)); end 

adder4bit; architecture Behavioral of adder4bit 

is begin process(a,b) variable cin: 

std_logic_vector(N downto 0); begin 

cin(0):='0'; for i in 0 to N-1 loop  

r(i)<= a(i) xor b(i) xor cin(i); cin(i+1):= (a(i) and b(i)) 

or ((a(i) xor b(i)) and cin(i)); end loop; r(N)<= cin(N); 

end process; end Behavioral;  

Subtraction: Boolean Equations:    =             ,     =  ̅  + (     )     
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Figure 6 Full Subtractor  

Here,     =      and     =     .  

  

Figure 7 4 bit Parallel Subtractor  

In Figure 7, 4 bit parallel subtractor using the subtractor shown in Figure 6 is shown. 

Algorithm: General algorithm (VHDL code) library IEEE;  

use IEEE.STD_LOGIC_1164.ALL;  

entity subtractor4bit is generic(N : integer := 4); port(a,b : in 

std_logic_vector(N-1 downto 0);     r : out 

std_logic_vector(N downto 0)); end subtractor4bit; architecture 

Behavioral of subtractor4bit is begin process(a,b) variable bin: 

std_logic_vector(N downto 0); begin bin(0):='0'; for i in 0 to N-1 

loop r(i)<= a(i) xor b(i) xor bin(i); bin(i+1):= ((not a(i)) and b(i)) 

or ((not (a(i) xor b(i))) and bin(i)); end loop; r(N)<= bin(N); end 

process; end Behavioral;  
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The output of the algorithm may be positive or negative. In binary number system, negative number 

can be represented by 2’s complement. To convert it to positive number the output should be 

converted again by 2’s complement method. Algorithm: 2’s Complement Subtraction (VHDL code) 

library IEEE;  

use IEEE.STD_LOGIC_1164.ALL;  

entity subtractor4bit_signadjust is generic(N : integer := 4); 

port(a,b : in std_logic_vector(N-1 downto 0);     r : out 

std_logic_vector(N downto 0)); end subtractor4bit_signadjust; 

architecture Behavioral of subtractor4bit_signadjust is begin 

process(a,b) variable bin,res,bin1: std_logic_vector(N downto 0); 

variable rs: std_logic_vector(N-1 downto 0); begin bin(0):='0'; 

for i in 0 to N-1 loop res(i):= a(i) xor b(i) xor bin(i); bin(i+1):= 

((not a(i)) and b(i)) or ((not (a(i) xor b(i))) and bin(i)); end loop; 

res(N):= bin(N); for i in 0 to N-1 loop rs(i):= res(N) xor res(i); 

end loop; bin1(0):=res(N); for i in 0 to N-1 loop  

r(i)<= rs(i) xor bin1(i); 

bin1(i+1):= rs(i) and bin1(i); 

end loop; r(N)<= res(N); end 

process; end Behavioral;  

Multiplier: Mathematical Expression:   = ∑ ∑     2 where   and   are bits of the operands   = 

∑   2 and   = ∑   2 .  
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Figure 8 Structure for simple array multiplier  

Algorithm: Array Multiplier (VHDL code) library 

IEEE;  

use IEEE.STD_LOGIC_1164.ALL;  

entity arraymultiplier4bit is generic(N : integer := 

4); port(a,b : in std_logic_vector(N-1 downto 0);  

   p : out std_logic_vector(2*N-1 downto 0)); end 

arraymultiplier4bit; architecture Behavioral of 

arraymultiplier4bit is begin  

process(a,b) variable res: std_logic_vector(N-1 downto 0); 

variable pp: std_logic_vector(N-1 downto 0); variable rs: 

std_logic_vector(N-1 downto 0); variable cin: 

std_logic_vector(N downto 0); begin for i in 0 to N-1 loop 

res(i):= '0'; end loop; for i in 0 to N-1 loop for j in 0 to N-1 

loop pp(j):= a(j) and b(i); end loop; cin(0):= '0'; for j in 0 to 

N-1 loop rs(j):= res(j) xor pp(j) xor cin(j); cin(j+1):= (res(j) 

and pp(j)) or ((res(j) xor pp(j)) and cin(j)); end loop; p(i)<= 

rs(0); res(N-2 downto 0):= rs(N-1 downto 1); res(N-1):= 

cin(N); end loop; p(2*N-1 downto N)<= res(N-1 downto 0);  
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end process; end 

Behavioral;  

Algorithm: Booth’s Multiplier (radix 2) (VHDL code) 

library IEEE; use IEEE.STD_LOGIC_1164.ALL;  

entity boothmultiplier4bit is generic(N : integer := 

4); port(a,b : in std_logic_vector(N-1 downto 0);  

   p : out std_logic_vector(2*N-1 downto 0)); end 

boothmultiplier4bit; architecture Behavioral of 

boothmultiplier4bit is begin process(a,b) variable 

res: std_logic_vector(N-1 downto 0); variable pp: 

std_logic_vector(N-1 downto 0); variable rs: 

std_logic_vector(N-1 downto 0); variable cin: 

std_logic_vector(N downto 0); begin for i in 0 to N-

1 loop res(i):= '0'; end loop; for i in 0 to N-1 loop 

if(b(i)='1') then  

for j in 0 to N-1 loop pp(j):= a(j); end loop; else for j in 0 to 

N-1 loop pp(j):= '0'; end loop; end if; cin(0):= '0'; for j in 0 

to N-1 loop rs(j):= res(j) xor pp(j) xor cin(j); cin(j+1):= 

(res(j) and pp(j)) or ((res(j) xor pp(j)) and cin(j)); end loop; 

p(i)<= rs(0); res(N-2 downto 0):= rs(N-1 downto 1); res(N-

1):= cin(N); end loop; p(2*N-1 downto N)<= res(N-1 

downto 0); end process; end Behavioral;  

Divider:  

Algorithm: Restoring Division:  
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Figure 9 Restoring Algorithm  

Restoring Division (VHDL code): library 

IEEE;  

use IEEE.STD_LOGIC_1164.ALL;  

entity restoring_division is generic(N : integer := 

4); port(a,b : in std_logic_vector(N-1 downto 0);  

   q : out std_logic_vector(N-1 downto 0);     r 

: out std_logic_vector(N downto 0)); end 

restoring_division;  

  

architecture Behavioral of restoring_division is begin 

process(a,b) variable pp,div,twos,rs,res,re: 

std_logic_vector(N downto 0); variable bin,bin1: 

std_logic_vector(N+1 downto 0); variable dv,d: 

std_logic_vector(N-1 downto 0);  
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begin for i in 0 to N-1 loop div(i):= 

not b(i); end loop; div(N):= '1'; dv(N-

1 downto 0):= a(N-1 downto 0);  

bin(0):= '1'; for i in 0 to N loop twos(i):= div(i) xor bin(i); 

bin(i+1):= div(i) and bin(i); end loop; for i in 0 to N loop pp(i):= 

'0'; end loop; for i in 0 to N-1 loop rs(N downto 0):= pp(N-1 

downto 0) & dv(N-1); d(N-1 downto 1):= dv(N-2 downto 0); 

bin1(0):= '0'; for j in 0 to N loop res(j):= rs(j) xor twos(j) xor 

bin1(j); bin1(j+1):= (rs(j) and twos(j)) or ((rs(j) xor twos(j)) and 

bin1(j)); end loop; if(res(N)='0') then  

pp(N downto 0):= res(N downto 0); 

else pp(N downto 0):= rs(N downto 

0);  

end if; d(0):= not res(N); dv(N-1 

downto 0):= d(N-1 downto 0); end 

loop; r(N downto 0)<= pp(N downto 

0); q(N-1 downto 0)<= dv(N-1 downto 

0); end process; end Behavioral;  

  

Algorithm: Non-Restoring Division:  
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Figure 9 Non-Restoring Algorithm  

Non-Restoring Division (VHDL code):  

library IEEE;  
use IEEE.STD_LOGIC_1164.ALL;  

entity nonrestoring_division is generic(N : integer := 4); port(a,b 

: in std_logic_vector(N-1 downto 0);     q : out 

std_logic_vector(N-1 downto 0);     r : out 

std_logic_vector(N downto 0)); end nonrestoring_division; 

architecture Behavioral of nonrestoring_division is begin 

process(a,b) variable pp,div,twos,rs,res,re,rsd: 

std_logic_vector(N downto 0); variable bin,bin1,bin2: 

std_logic_vector(N+1 downto 0); variable dv,d: 

std_logic_vector(N-1 downto 0); begin for i in 0 to N-1 loop 

div(i):= not b(i); end loop; div(N):= '1'; re(N-1 downto 0):= b(N-

1 downto 0); re(N):= '0'; dv(N-1 downto 0):= a(N-1 downto 0);  
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bin(0):= '1'; for i in 

0 to N loop 

twos(i):= div(i) 

xor bin(i); 

bin(i+1):= div(i) 

and bin(i); end 

loop; for i in 0 to 

N loop pp(i):= '0'; 

end loop; for i in 0 

to N-1 loop rs(N 

downto 0):= pp(N-

1 downto 0) & 

dv(N-1); d(N-1 

downto 1):= dv(N-

2 downto 0); 

bin1(0):= '0'; for j 

in 0 to N loop 

res(j):= rs(j) xor 

twos(j) xor 

bin1(j); 

bin1(j+1):= (rs(j) 

and twos(j)) or 

((rs(j) xor twos(j)) 
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and bin1(j)); end 

loop; for j in 0 to 

N loop rsd(j):= 

res(N) and re(j); 

end loop; 

bin2(0):= '0'; for j 

in 0 to N loop 

pp(j):= res(j) xor 

rsd(j) xor bin2(j); 

bin2(j+1):= (res(j) 

and rsd(j)) or 

((res(j) xor rsd(j)) 

and bin2(j)); end 

loop; d(0):= not 

res(N);  

dv(N-1 downto 0):= d(N-1 downto 0); 

end loop; r(N downto 0)<= pp(N 

downto 0); q(N-1 downto 0)<= dv(N-1 

downto 0); end process; end 

Behavioral;  

IEEE-754 format for floating point numbers:  

A floating point signed number A can be represented as,   =   2 + ∑   2 , where N is the number 
of precision. IEEE standardized the representation of floating point numbers as 32 bit for single 
precision and 64 bit for double precision.  
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Figure 10 IEEE-754 format for single precision and double precision floating point numbers  

As per IEEE format, for single precision, the MSB is the sign bit, next 8 bits are the exponent and 
the last 23 bits are mantissa or fractional bits. For double precision, the MSB is the sign bit, next 11 
bits are the exponent and the last 52 bits are mantissa or fractional bits. If A is a floating point 
number, then   = (−1) × 1.   × 2( ), i=31th bit value, m=mantissa and e=exponent for single precision 
representation. For double precision,   = (−1) × 1.   × 2( ), i=63th bit value.  
Algorithm: Binary to IEEE-754 single precision format for 33 bit number (one sign bit) (VHDL 
code):  

library IEEE; use 

IEEE.STD_LOGIC_1164.ALL;  

entity ieee_floating_point_format is port(a : in 

std_logic_vector(32 downto 0);     ifnr : out 

std_logic_vector(31 downto 0)); end 

ieee_floating_point_format; architecture Behavioral of 

ieee_floating_point_format is begin process(a) variable 

inta,binexp: integer; begin ifnr(31)<= a(32); for i in 0 to 
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31 loop if(a(i)='1') then inta:= i; end if; end loop; 

binexp:= inta + 127; for i in 0 to 7 loop if((binexp mod 

2)=0) then ifnr(i+23)<= '0'; else  

ifnr(i+23)<= '1'; end if; binexp:= 

binexp / 2; end loop; ifnr(22 downto 

0)<= a(31 downto 9); end process; 

end Behavioral;  

  

Truncation Technique:  

Consider, a floating point number,   = ∑   2 . If the number is truncated up to n bits then it can 

be approximated as,  ̅ = ∑   2 . Then the truncation error can be represented as,  

  =   −  ̅ = ∑   2 − ∑   2 = ∑   2 < ∑ 2 = 2 ( )(1 + 2 + 
2 + ⋯ ≅ ∞)  2 which implies that if the number of precision (n) of the floating point number is 
increased then the truncation error can be reduced.   

Now, let us consider a floating point number is of the form   = ∑   2 + 0 × 2 ( ) + ∑ 2 . It can be 

approximated as  ̅ = ∑   2 + 2 ( ). Since,  ̅ >  , then here the  

truncation  error  is    =  ̅ −   = ∑   2 + 2 ( ) − ∑   2 − 0 × 2 ( ) − 
∑ 2 = 2 ( ) − ∑ 2 = 2 ( ) − 2 ( )(1 + 2 + 2 +   )   2 ( ) − 

2 ( )=0 which implies that the truncation error for this kind of approximation is almost 100% 

accurate  if  the  number  of  precision  (n)  is  increased. 

 As  for  example,  let   = 0.10110010101111111 ….. It can be approximated as  ̅ = 

0.1011001011. Therefore the finding of truncation should be performed using large precision to 

eliminate error. Algorithm: (VHDL code) library IEEE; use IEEE.STD_LOGIC_1164.ALL;  

entity truncation is generic(N : integer := 32); port(a : in 

std_logic_vector(63 downto 0);     approx : out 

std_logic_vector(N-1 downto 0)); end truncation; 

architecture Behavioral of truncation is begin 
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process(a) variable appa: std_logic_vector(N-1 downto 

0); variable cnt: integer; begin appa(31 downto 1):= 

a(63 downto N+1); for i in 0 to N-1 loop if(a(i)='1') 

then cnt := cnt + 1; end if; end loop; if(cnt>((N*3)/4)) 

then appa(0) := '1'; else appa(0) := a(N); end if; 

approx(31 downto 0)<= appa(31 downto 0); cnt:= 0; 

end process; end Behavioral;  

  
Instruction Set:  

An Instruction is a command given to the computer to perform a specified operation on given data. 
 The instruction  set of  a microprocessor is  the  collection  of  the 
instructions that the microprocessor is designed to execute. The instructions described here are of 
Intel 8085. These instructions are of Intel Corporation. The instructions can be classified into the 
following groups:  

1. Data Transfer Group  
2. Arithmetic Group  
3. Logical Group  
4. Branch Control Group  
5. I/O and Machine Control Group  

Data Transfer Group:  

This group includes the function of data transfer and loading from one register or input port to other 
registers. In normal 8085 programming, MOV, MVI, LXI, LDA, STA etc. instructions are called 
data transfer instructions.  

Arithmetic Group:  

This group includes the arithmetic operations. In 8085 programming, ADD, SUB, INR, DCR, DAD 
etc. are called arithmetic instructions. Here Accumulator and Flag registers have important 
contributions.  

Logical Group:  

This group includes the logical operations. In 8085 programming, ANA, XRA, ORA, CMP, RAL, 
RAR, RLC, RRC etc. are called logical instructions. Here also Accumulator and Flag registers have 
important contributions.  
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Branch Control Group:  

This group includes the instructions like conditional and unconditional jump, subroutine call, 
return, restart etc. In 8085 programming, JMP, JC, JZ, CALL, CZ, RST etc. are the branch 
instructions.  

I/O and Machine Control Group:  

This group includes the input/ output port declaration, stack, machine control etc. IN, OUT, PUSH, 
POP, HLT etc. are these instructions.  

Instruction Format:  

An instruction format defines the layout of the bits of an instruction, in terms of its constituents. An 
instruction format must include an opcode and, implicitly or explicitly, zero or more operands.  

  

Figure 11 Instruction Format  

Figure 11 shows different instruction formats. The first format (Figure 11(a)) consists of zero address 
instruction. The second format (Figure 11(b)) consists of single address instruction. Similarly Figure 
11(c) and (d) show the formats for two and three address instructions respectively. Opcode is the 
encoded form of the instruction to be executed by the microprocessor or microcontroller.  

In CISC (Complex Instruction Set Computer) architecture, few extra instructions are required for a 

fixed program but in RISC (Reduced Instruction Set Computer) architecture, the same program can 

be executed with less number of instructions. Let us take an example with the following C program. 

if(a>=b) { a=a-b; } else { a=b-a;  
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}  
In CISC processor like 8085, this program can be written as follows.  

MVI B, a;  // Load a  

MVI C, b;  //Load b  

MOV A, B;  //Copy a to Accumulator   

SUB C;  //Subtract b from a;  

JC Loop;  //Jump to Loop line if carry flag is set  

CMA;  //Complement A if carry flag is reset  

ADI #01h;  //Add 1 with the accumulator content  

Loop: OUT 80h;  //Output through port address 80h  

Therefore 8 instructions are required to complete the program in CISC processor. In RISC 
processor like ARM, this program can be written as follows.  

MOV R1, a;  

MOV R2, b;  

CMP R1, R2;  

SUBGE R1, R1, R2;  

SUBLT R1, R2, R1;  

OUT Port address, R1;  

Thus only 6 instructions are required to complete the program in RISC processor.  


