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Module - 1  

Maxwell equation, Boundary between media interface, Helmholtz’s equation, Plane Wave in lossy 
dielectric, loss-less dielectric, good conductor, free-space; Poynting theorem, power flow, Poynting 
Vector, Skin Depth, Surface Resistance.  

Maxwell equations  

  

The general form of time- varying Maxwell equations, can be written in differential, form as  

  

These four equations form the basis of all electromagnetic theory. They are partial differential 
equations and relate the electric and magnetic fields to each other and their sources, charge and current 
density.   

The auxiliary equations are:  

D = ε E  

B = µH J 

= σE  

  
D = 0E + P  

The boundary conditions on Electric field and Magnetic field at interfaces are given as:  

For tangential components and normal components:  

Et1 = Et2  

Ht1 = Ht2  



  

DN1 - DN2 = ρS BN1 

= BN2  
  

  

It is often desirable to idealize a physical problem by assuming a perfect conductor for which σ is 

infinite but J is finite. From Ohm’s law, then, in a perfect conductor, E = 0 and it follows from 

the point form of Faraday’s law that for time-varying fields. H = 0  

  

Wave  Propagation in Free Space  

When considering electromagnetic waves in free space, we note that the medium is source-less (ρ = J 
= 0). Under these conditions, Maxwell’s equations may be written in terms of E and H only as  

  

  

Manipulation of the above equations lead us to the Helmholtz’s equation:  

 

  

In phasor form these equations can be simplified as   

 

Wave propagation in lossy dielectric  
If the medium is conductive, with a conductivity σ, Maxwell’s curl equations can be written as   



  

The resulting wave equation for E¯ then becomes  

  

A complex propagation constant for the medium as  

  

Where α is the attenuation constant and β is the phase constant.  

Assuming an electric field with only an x component and uniform in x and y, the wave equation of 

reduces to   

  

Which has solutions   

  

The positive traveling wave then has a propagation factor of the form  

  

which has solutions  

  

This represents a wave traveling in the +z direction with a phase velocity vp = ω/β, a wavelength                           
λ = 2π/β, and an exponential damping factor.  

If the loss is removed, σ = 0, and we have γ = jk and α = 0,β = k.  

  

Loss can also be treated through the use of a complex permittivity. With σ = 0 but ε = ε’-j ε” complex, 
we have that  

  

Where  is the loss tangent of the material.  

The associated magnetic field can be calculated as  



  

The intrinsic impedance of the conducting medium is now complex,  

  

  

Plane Waves in a Good Conductor  
A good conductor is a special case of the preceding analysis, where the conductive current is much 
greater than the displacement current, which means that σ >> ω ε. In terms of a complex ε, rather than 
conductivity, this condition is equivalent to ε”>> ε’.  

The propagation constant   

  

The skin depth, or characteristic depth of penetration, is defined as  

  

Thus the amplitude of the fields in the conductor will decay by an amount 1/e, or 36.8%, after 
traveling a distance of one skin depth.  

  

Poynting’s theorem and Poynting Vector  

  

  

  

Poynting’s theorem relates total electromagnetic power flowing to power dissipation. On the righthand 
side, the firstintegral is the total (but instantaneous) ohmic power dissipated within the volume. The 
second integral is the total energy stored in the electric field, and the third integral is the stored energy 
in the magnetic field. Since time derivatives are taken of the second and third integrals, those results 
give the time rates of increase of energy stored within the volume, or the instantaneous power going to 
increase the stored energy. The sum of the expressions on the right must therefore be the total power 
flowing into this volume, and so the total power flowing out of the volume is  



  

where the integral is over the closed surface surrounding the volume. The cross product E × H is 
known as the Poynting vector, S, which is interpreted as an instantaneous power density, measured in 
watts per square meter (W/m2). The direction of the vector S indicates the direction of the 
instantaneous  power flow at a point.  
Module - 2  

Concept of lumped parameters, Transmission line equation & their solution, Propagation constant, 
characteristic Impedance, wavelength, velocity of propagation for distortion less line and loss-less 
line; Reflection and Transmission coefficients, Standing Wave, VSWR, Input Impedance; Smith 
Chart; Some impedance techniques- Quarter wave matching, Single stub matching; Reflection in 
miss-matched load; T-line in time domain, Lattice diagram calculation, Pulse propagation on T-line.  

Concept of lumped parameters  
When the impedance of a transmission line or device at the operating frequency may be considered as 
equivalent to devices concentrated at one point and the parameters of the system including the line or 
device is not substantially independent of the load devices connected thereto, the transmission line or 
device may be said to have lumped parameters. Lumped impedances are also used to include devices 
such as capacitors, inductors, and resistors which have their impedance concentrated at the terminals 
thereof.  

What is the difference between Lumped and Distributed systems?  
  

The elements building a lumped system are thought of being concentrated at singular points in 

space. The classical example is an electrical circuit with passive elements like resistor, inductance and 

capacitor. The physical quantities current and voltage are functions of time (only). E. g. the current at 

a capacitor with capacity C is given by i(t)=Cdv(t)/dt  

Where C is a constant (and so are R and L). This leads to ordinary differential equations.  

In contrast, the elements in distributed systems are thought of being distributed in space, so that 
physical quantities depend on both time and space. The classical example is the electrical line where 
inductance, capacity and resistance are not constant but functions of length x. This leads to partial 
derivatives of i(t,x) and v(t,x) in t and x.  

It is important to realize that the terms lumped or distributed are not properties of the system itself. 
These properties are related to the size of the system compared to the wavelength of the voltages and 
currents passing through it. So a resistor is or isn't a lumped element (even though it is usually meant 
to be one), depending on the frequency of the applied signals.  

An element can be considered as lumped if its size is much smaller than the wavelength of the applied 

voltages and currents. In this case wave propagation effects may be neglected and a lumped element 

can be treated as a black box which is completely described by the behaviour at its terminals. 

Transmission line equation & their solution  



  

Previously assume that any change in v0(t) appears instantly at vL(t).  

This is not true. If fact signals travel at around half the speed of light (c = 30 cm/ns).   

Reason: all wires have capacitance to ground and to neighbouring conductors and also selfinductance. 
It takes time to change the current through an inductor or voltage across a capacitor. A transmission 
line is a wire with a uniform geometry along its length: the capacitance and inductance of any segment 
is proportional to its length. We represent as a large number of small inductors and capacitors spaced 
along the line. The signal speed along a transmission line is predictable.  

  

  

Transmission Line Equations  
A short section of line δx long: v (x, t ) and i (x, t) depend on both position and time.  

  

Small δx ⇒ ignore 2nd order derivatives:   

∂v(x,t)/ ∂t = ∂v(x +δx,t)/ ∂t =∂v/∂t .   

Basic Equations   

KVL: v (x, t) = V2 + v ( x + δx, t) + V1   

KCL: i (x, t) = i C + i ( x + δx, t )   

Capacitor equation: C ∂v/∂t = i C = i (x, t ) − i ( x + δx, t) = − (∂i /∂x) δx   



Inductor equation ( L 1 and L 2 have the same current): ( L 1 + L 2 ) ∂i/ ∂t = V1 + V2 = v (x, t ) − v ( x  
+ δx, t) = −(∂v /∂x) δx   

Transmission Line Equations  

C0 ∂v/∂t = − ∂i /∂x  

 L 0 ∂i /∂t = −∂v/ ∂x  

where C0 = C/ δx is the capacitance per unit length (Farads/m) and L 0 =( L1+ L 2)/ δx is the total 
inductance per unit length (Henries/m).  

Solution to Transmission Line Equations  
Transmission Line Equations: C0 ∂v/∂t = − ∂i /∂x ; L 0 ∂i /∂t = −∂v/ ∂x   

General solution: v (t, x) = f ( t − x /u) + g ( t + x/ u )   

i (t, x) = (f(t – x/ u )− g(t + x /u )) /Z 0   

where u = √( 1/L0C0) and Z0 = √(L0/C0) . u is the propagation velocity and Z0 is the characteristic 

impedance.  f() and g() can be any differentiable functions.   

Verify by substitution:  

 − ∂i/∂x = − ( (− f ′ (t – x/ u )− g ′ (t + x /u ))/ Z0 × (1/u) = C0( f ′ ( t − x /u ) + g ′ ( t + x /u ))  = C0∂v/∂t  

Propagation, attenuation and phase constants  

The propagation constant is an important parameter associated with transmission lines. It is a complex 
number denoted by Greek lower case letter γ (gamma), and is used to describe the behavior of an 
electromagnetic wave along a transmission line.  

Propagation, attenuation and phase constants  

The propagation constant is separated into two components that have very different effects on signals: 

γ=α+jß α= attenuation constant ß= phase constant   

  
The real part of the propagation constant is the attenuation constant and is denoted by Greek 
lowercase letter α (alpha). It causes a signal amplitude to decrease along a transmission line. The 
natural units of the attenuation constant are Nepers/meter, but we often convert to dB/meter in 
microwave engineering. To get loss in dB/length, multiply Nepers/length by 8.686. Note that 
attenuation constant is always a positive number.  

The phase constant is denoted by Greek lowercase letter β (beta) adds the imaginary component to 
the propagation constant. It determines the sinusoidal amplitude/phase of the signal along a 
transmission line, at a constant time. The phase constant's "natural" units are radians/meter, but we 
often convert to degrees/meter. A transmission line of length "l" will have an electrical phase of βl, in 
radians or degrees. To convert from radians to degrees, multiply by 180/π.  
The two parts of the propagation constant have radically different effects on a wave. The amplitude of 
a wave (frozen in time) goes as cosine(βl). In a lossless transmission line, the wave would propagate 



as a perfect sine wave. In real life there is some loss to the transmission line, and that is where the 
attenuation constant comes in. The amplitude of the signal decays as Exp(-αl). The composite 
behaviour of the propagation constant is observed when you multiply the effects of α and β.  
  
Phase constant  
  
Recall that there are 2π radians in a wavelength, therefore the relationship between phase constant and 
wavelength is simply:  
ß=2π/λ(radian/length)  
  
Distortion less line and Loss-less line  
  
A transmission line is said to be distortionless when attenuation constant ‘α’ is frequency independent and 
the phase shift constant ‘β’ is linearly dependent on the frequency.  

Condition for line to be distortionless  

R/L=G/C  

(a)    Propagation constant  

γ = (R+jωL)(G+jωC)  

Or                     γ = RG(1+jωL/R) (1+jωC/G)  

If                       R/L=G/C  

Put value of R/L in equation of γ  

Thus                 γ = RG(1+jωC/G)(1+jωC/G)  

Or                     γ = RG(1+jωC/G)  

Also                   γ =α+jβ  

Comparing Real and Imaginary parts, we get  

α=RG  

and                       jβ= RGjωC/G  

=jω RC/G  

Thus                         β=ω LC  

The above results show that α is frequency independent and β is frequency dependent  



(b) Characteristic impedance  

Z0= √(R+jωL)/(G+jωC)  

Z0 =√R/G=√L/C  

(c) Phase velocity:-  

Vp=ω/β  

Substituting value of β in above expression,we get  

Vp=ω/ω√ LC  

Thus                              vp=1/√ LC  

LOSSLESS TRANSMISSION LINE AND ITS CONDITION  
CHARACTERISTIC IMPEDANCE ,Z0  

DEFINITION I:- Z0 is defined as the ratio of the square root of series impedance per unit length ,Z to the square 
root of shut admittance per unit length,Ỳ  

Z0=Z/Y =√((R+jωL)/(G+jωc))  

DEFINITION 2:- The characteristic impedance , Z0 of a line is defined as the ratio of the forward voltage wave 
,Vfto the forward current wave ,If at any point on the line.  

Z0=Vf/If  

DEFINITION 3:- z0 IS defined as the minus of the ratio of the reflected voltage wave . Vr to the reflected current 
wave , Ir at any point on the line,  

Z0= -Vr/Ir  

Characteristic impedance ,Z0 is also called Surge imperdance.  

LOSSLESS TRANSMISSION LINES  

A transmission line is said to be lossless if the conductors of line are perfect that is cnductivity σc=∞ and the 
dielectric medium between the lines is lossless that is conductivity σd=0  

Condition for a line to be lossless  

R=0=G  

For loss less line,  



(a) Attenuation Constant       α=0  

(b) Propagation constant  

γ =α+jβ=jβ                                               (α=0)  

Also as                      γ =√((R+jωL)(G+jωC))  

As                              R=0, G=0  

Thus propagation constant     γ =jωLC  

(c) Phase shift constant  

By comparing imaginary parts of γ, we get  

Phase shift constant β=ωLC  

(d) Characteristic impedance,  

Z0=√((R+jωL)/(G+jωC))  

As                                          R=0=G  

Z0=√(L/C)  

Thus Z0 is pure reactance (that is in the form of inductance or capacitance).  

(e) Phase velocity or the velocity of propagation in lossless line,  

Vp=ω/β  

By putting value of β,we get  

Thus                          vp=ω/ω √LC Or                                      

vp=1/√LC  

Consider this circuit:  

  



 I.E., a transmission line with characteristic impedance Z1 transitions to a different transmission 

line at location z =0. This second transmission line has different characteristic impedance Z2 

(Z1≠ Z2). This second line is terminated with a load ZL = Z2 (i.e., the second line is matched).  

z < 0 We know that the voltage along the first transmission line is:   

  

while the current along that same line is described as:   

  

z > 0 We likewise know that the voltage along the second transmission line is:   

  

while the current along that same line is described as:   

  

Moreover, since the second line is terminated in a matched load, we know that the reflected 
wave from this load must be zero:   

  

The voltage and current along the second transmission line is thus simply:  

  

z=0 At the location where these two transmission lines meet, the current and voltage 
expressions each must satisfy some specific boundary conditions:  

  



The first boundary condition comes from KVL, and states that:  

  

We can therefore define a transmission coefficient, which relates v02
+ to V01:  

  

We can therefore define a reflection coefficient, which relates V01
- to V01

+  

  

Standing wave in transmission line  

Whenever there is a mismatch of impedance between transmission line and load, reflections will occur. If the 
incident signal is a continuous AC waveform, these reflections will mix with more of the oncoming incident 
waveform to produce stationary waveforms called standing waves  

VSWR  

VSWR and System Efficiency  

In an ideal system 100% of the energy is transmitted from the power stages to the load. This 
requires an exact match between the source impedance, i.e., the characteristic impedance of the 
transmission line and all its connectors, and the load's impedance. The signal's AC voltage will 
be the same from end to end since it passes through without interference.  

In real systems, however, mismatched impedances cause some of the power to be reflected 
back toward the source (like an echo). Reflections cause constructive and destructive 
interference, leading to peaks and valleys in the voltage at various times and distances along 
the line. VSWR measures these voltage variances. It is the ratio of the highest voltage anywhere 
along the transmission line to the lowest voltage.  

Since the voltage does not vary in an ideal system, its VSWR is 1.0 or, as commonly expressed 
as a ratio of 1:1. When reflections occur, the voltages vary and VSWR is higher, for example 
1.2, or 1.2:1.  

Reflected Energy  



When a transmitted wave hits a boundary such as the one between the lossless transmission 
line and load (Figure 1), some energy will be transmitted to the load and some will be reflected. 
The reflection coefficient relates the incoming and reflected waves as:  

Γ = V-/V+  (Eq. 1)  

Where V- is the reflected wave and V+ is the incoming wave. VSWR is related to the magnitude 

of the voltage reflection coefficient (Γ) by:  

VSWR = (1 + |Γ|)/(1 – |Γ|)  (Eq. 2)  

  
Transmission line circuit illustrating the impedance mismatch boundary between the 
transmission line and the load. Reflections occur at the boundary designated by Γ. The incident 
wave is V+ and the reflective wave is V-.  

VSWR can be measured directly with an SWR meter. An RF test instrument such as a vector 
network analyzer (VNA) can be used to measure the reflection coefficients of the input port 
(S11) and the output port (S22). S11 and S22 are equivalent to Γ at the input and output port, 
respectively. The VNAs with math modes can also directly calculate and display the resulting 
VSWR value.  

The return loss at the input and output ports can be calculated from the reflection coefficient, 
S11 or S22, as follows:  

RLIN = 20log10|S11| dB  (Eq. 3)  
RLOUT = 20log10|S22| dB  (Eq. 4)  

The reflection coefficient is calculated from the characteristic impedance of the transmission 
line and the load impedance as follows:  

Γ = (ZL - ZO)/(ZL + ZO)  (Eq. 5)  

Where ZL is the load impedance and ZO is the characteristic impedance of the transmission line 
(Figure 1).  

VSWR can also be expressed in terms of ZL and ZO. Substituting Equation 5 into Equation 2, 
we obtain:  

VSWR = [1 + |(ZL - ZO)/(ZL + ZO)|]/[1 - |(ZL - ZO)/(ZL + ZO)|] = (ZL + ZO + |ZL - ZO|)/(ZL + ZO 
- |ZL - ZO|)  



For ZL > ZO, |ZL - ZO| = ZL - ZO  

Therefore:  

VSWR = (ZL + ZO + ZL - ZO)/(ZL + ZO - ZL + ZO) = ZL/ZO.  (Eq. 6)  

For ZL < ZO, |ZL - ZO| = ZO - ZL  

Smith chart  

The Smith chart, invented by Phillip H. Smith (1905–1987), is a graphical aid or nomogram designed 
for electrical and electronics engineers specializing in radio frequency (RF) engineering to assist in 
solving problems with transmission lines and matching circuits. The Smith chart can be used to 
simultaneously display multiple parameters including impedances, admittances, reflection 
coefficients, scattering parameters, noise figure circles, constant gain contours and regions for 
unconditional stability, including mechanical vibrations analysis.  

 The Smith chart is most frequently used at or within the unity radius region. However, the remainder 
is still mathematically relevant, being used, for example, in oscillator design and stability analysis.   

While the use of paper Smith charts for solving the complex mathematics involved in matching 
problems has been largely replaced by software based methods, the Smith chart display is still the 
preferred method of displaying how RF parameters behave at one or more frequencies, an alternative 
to using tabular information. Thus most RF circuit analysis software includes a Smith chart option for 
the display of results and all but the simplest impedance measuring instruments can display measured 
results on a Smith chart display.  



  

Single stub impedance matching  

Impedance matching can be achieved by inserting another transmission line (stub) as shown 
in the diagram below  

  

There are two design parameters for single stub matching: ‰   
• The location of the stub with reference to the load dstub ‰   



• The length of the stub line Lstub  

Any load impedance can be matched to the line by using single stub technique. The drawback 
of this approach is that if the load is changed, the location of insertion may have to be moved.   
The transmission line realizing the stub is normally terminated by a short or by an open circuit. 
In many cases it is also convenient to select the same characteristic impedance used for the 
main line, although this is not necessary. The choice of open or shorted stub may depend in 
practice on a number of factors. A short circuited stub is less prone to leakage of 
electromagnetic radiation and is somewhat easier to realize. On the other hand, an open 
circuited stub may be more practical for certain types of transmission lines, for example 
microstrips where one would have to drill the insulating substrate to short circuit the two 
conductors of the line.  

Quarter Wave Transforme  

  

Module - 3  

a) Antenna Characteristics: Radiation Pattern, Beam width, Radiation resistance, Directivity, Gain, 
Efficiency, Impedance, Polarization, Noise temperature; Friis transmission equation.  

b) Radiation characteristics of Herzian dipole antenna; Duality principle.  



c) Properties and Typical application:- Half-wave Dipole, Mono pole, Loop antenna, 
Parabolic & Corner Reflector antenna, Helical antenna, Pyramidal Horn antenna, 
Micro-Strip patch antenna, Array: Yagi-Uda, Log-Periodic.  

 

  

A. Antenna Introduction: Radiation of EM waves   
  
Electromagnetic (EM) radiation is a form of energy that is all around us and takes many 
forms, such as radio waves, microwaves, X-rays and gamma rays. Sunlight is also a form of 
EM energy, but visible light is only a small portion of the EM spectrum, which contains a 
broad range of electromagnetic wavelengths.  
Electromagnetic theory  
Electricity and magnetism were once thought to be separate forces. However, in 1873, 
Scottish physicist James Clerk Maxwell developed a unified theory of electromagnetism. The 
study of electromagnetism deals with how electrically charged particles interact with each 
other and with magnetic fields.  
There are four main electromagnetic interactions:  

• The force of attraction or repulsion between electric charges is inversely proportional 
to the square of the distance between them.  

• Magnetic poles come in pairs that attract and repel each other, much as electric 
charges do.  

• An electric current in a wire produces a magnetic field whose direction depends on 
the direction of the current. A moving electric field produces a magnetic field, and 
vice versa.  

• Time varying current in a conductor is a source of Electromagnetic (EM) radiation.  

Waves and fields  
EM radiation is created when an atomic particle, such as an electron, is accelerated by an 
electric field, causing it to move. The movement produces oscillating electric and magnetic 
fields, which travel at right angles to each other in a bundle of light energy called a photon. 
Photons travel in harmonic waves at the fastest speed possible in the universe: 186,282 miles 
per second (299,792,458 meters per second) in a vacuum, also known as the speed of light. 
The waves have certain characteristics, given as frequency, wavelength or energy.  

  
Figure 1-1 Electromagnetic (EM) radiation in free space  

  
The EM spectrum  
  
EM radiation spans an enormous range of wavelengths and frequencies. This range is known 
as the electromagnetic spectrum. The EM spectrum is generally divided into seven regions, in 
order of decreasing wavelength and increasing energy and frequency. The common 



designations are: radio waves, microwaves, infrared (IR), visible light, ultraviolet (UV), 
Xrays and gamma rays. Typically, lower-energy radiation, such as radio waves, is expressed 
as frequency; microwaves, infrared, visible and UV light are usually expressed as 
wavelength; and higher-energy radiation, such as X-rays and gamma rays, is expressed in 
terms of energy per photon.   
  
  

  
Figure 1-2 The EM spectrum  

  
  

Introducing Antenna in communication system:  
  
An antenna is a metallic structure that captures and/or transmits radio electromagnetic waves. 
Antennas come in all shapes and sizes from little ones that can be found on your roof to 
watch TV to really big ones that capture signals from satellites millions of miles away. 
Another definition of antenna- It is a transducer that converts radio frequency (RF) fields into 
alternating current or vice versa. There are both receiving and transmission antennas for 
sending or receiving radio transmissions. Antennas play an important role in the operation of 
all radio equipment. They are used in wireless local area networks, mobile telephony and 
satellite communication.  
  
Theoretically, any structure can radiate EM waves, but not all structure can serve as efficient 
radiation mechanisms.  
  
Application of antenna:  
U.S. Navy’s ELF system  

• Operates at 76 Hz  
• 80 miles of wire  
• Penetrates to underwater subs  
• One-way system  

VHF and UHF Antennas  
Wireless Communications  
  

B. Antenna Characteristics: Radiation Pattern, Beam Width:  
  

  



The angular dependence of the radiating and receiving properties of an antenna in the farfield 
is often referred to as the antenna radiation pattern. Thus, a pattern is a normalized plot of the 
directivity, gain, or effective aperture as a function of angle and is often given in dB scale. 
Typically, the radiated normalized radiated power density or radiated field is plotted in dB 
(for the infinitesimal or ideal dipole, the power density sin2θ is plotted in dB). A typical 
antenna pattern has a main lobe, sidelobes, minor lobes, a backlobe, and several nulls, as 
illustrated in Figure 1-3, in a φ = const. plane. The half-power or 3 dB beamwidth of the main 
lobe (or main beam) is indicated in the drawing. If the pattern of an antenna is given in a 
plane parallel to the E field vector, the corresponding pattern is referred to as an E plane 
pattern. Alternatively, if the pattern cut is in a plane parallel to the H field polarization, it is 
called an H plane pattern.  
There are many types of antenna radiation patterns, but the most common are  

• Isotropic (Ideal case)  
● Omnidirectional (azimuthal-plane)  
● Pencil beam  
● Fan beam  
● Shaped beam  
  
Isotropic radiation is the radiation from a point source, radiating uniformly in all directions, 
with same intensity regardless of the direction of measurement in figure 1-4. The 
omnidirectional pattern is most popular in communication and broadcast applications in 
figure 1-4. The azimuthal pattern is circular, but the elevation pattern has some directivity to 
increase the gain in the horizontal direction. The term pencil beam is applied to a highly 
directive antenna pattern consisting of a major lobe contained within a cone of a small solid 
angle. Highly directive antenna patterns can be employed for point-to-point communication 
links and help reduce the required transmitter power. A fan beam is narrow in one direction 
and wide in the other. A fan beam is typically used in search or surveillance radars. Shaped 

beam patterns are adapted to the requirements of 
particular applications.  
  
 Figure 1-3 Antenna pattern in plane φ = const  
  
Beamwidth between first nulls (FNBW) ~ 2.25 ×  

HPBW  
(Half Power Beamwidth)  

  
Side Lobe Level (SLL)< 20 dB for satellite and high 
power applications  
  

Front to Back Ratio  
(F/B) > 20 dB  

  
Figure 1-4  
Isotropic, Omnidirectional radiation,   

    



Isotropic Radiation  
Pattern D = 1 = 0dB 
Omni-Directional 
Radiation Pattern of λ/2  

Dipole Antenna D =  
1.64 = 2.1dB  

  
  
  
  
  

Radiation 
Resistance   
  
The power flowing through a circuit is P=V×I, where V is the voltage (defined as energy per 
unit charge) and I is the current (defined as charge flow per unit time), so P has dimensions of 
energy per unit time. The physicist George Simon Ohm observed that the current flowing 
through most materials is proportional to the applied voltage, so many (but not all) objects 
have a well-defined resistance defined by R=V/I (Ohm's law). For them, P=V×I=I2R=V2/R. 
From Ohm's law for time-varying currents,   
  

  
  
The radiation resistance of an antenna is defined by   

  
For our short dipole, the radiation resistance is    

  
Where c is velocity of EM wave in free space, λ is wave length of operating frequency, l is 
length of antenna.  
  

Directivity:   
  
Directivity of an antenna is the ratio of radiation density in the direction of maximum 
radiation to the radiation density averaged over all the directions.  

An antenna that radiates equally in all directions would have effectively zero directionality, 
and the directivity of this type of antenna would be 1 (or 0 dB).  

  
If  I = I 0 cos(ω t ) ,  



 
  

  are radiation field 
component of θ dircetion and φ direction repectively.  
   

Directivity also calculated   are Half Power Beamwidth 
in radian at E-plane and H-Plane repectively  
  
Example: For Infinitesimal Dipole  

     
  

Directivity is proportional to the Effective Aperture Area of Antenna  where  
Aeff is the effective area of antenna, λ is wave length of operating frequency.  
  

Gain of Antenna:  
Antenna is passive element, so gain of antenna does not mean that ratio between output power 
and input power. Definition of gain for antenna is that ratio between the powers produced by the 
antenna from a far-field source on the antenna's beam axis to the power produced by a 
hypothetical lossless isotropic antenna, which is equally sensitive to signals from all directions.  
  
Antenna gain is more commonly quoted than directivity.   
  
Gain(G) = Efficiency (η) × Directivity (D)   
   
Value of the efficiency of antenna is always less than one due to ohmi loss of antenna and 
radiation loss of EM wave.  
   

Efficiency:  
  
The efficiency of an antenna is a ratio of the power delivered to the antenna relative to the 
power radiated from the antenna. A high efficiency antenna has most of the power present at 
the antenna's input radiated away. A low efficiency antenna has most of the power absorbed 
as losses within the antenna, or reflected away due to impedance mismatch.  
  
The antenna efficiency (or radiation efficiency) can be written as the ratio of the radiated 
power to the input power of the antenna:  

  

  

  
Where    is beam soild angale   

  

  ;    and  

  ; where  



  

  
  

Impedance:  
  
Total impedance of antenna is ZA=RA+jXA  
RA represents power loss from the antenna and XA gives the power stored in the near field of 
the antenna.  
RA = Rrad + RL (Rrad is radiation resistance, RL is ohmi loss of antenna)  

  
  
VSWR:   
  
We see that an antenna's impedance is important for minimizing impedance-mismatch loss. A 
poorly matched antenna will not radiate power. This can be somewhat alleviated via 
impedance matching, although this doesn't always work over a sufficient bandwidth.  
  

Reflection coefficient     
  

  
  
A common measure of how well matched the antenna is to the transmission line or receiver is 
known as the Voltage Standing Wave Ratio (VSWR). VSWR is a real number that is always 
greater than or equal to 1. A VSWR of 1 indicates no mismatch loss (the antenna is perfectly 
matched to the transmission line). Higher values of VSWR indicate more mismatch loss. As 
an example of common VSWR values, a VSWR of 3.0 indicates about 75% of the power is 
delivered to the antenna (1.25 dB of mismatch loss); a VSWR of 7.0 indicates 44% of the 
power is delivered to the antenna (3.6 dB of mismatch loss). A VSWR of 6 or more is pretty 
high and will generally need to be improved.  
  
  

Polarization:   
  



Orientation of radiated electric field vector in the main beam of the antenna.  
  
Any electromagnetic wave can be decomposed into two orthogonal polarized components. 
For example, the transverse electric field can be resolved into horizontal and vertical 
components, or horizontal and vertical linear polarizations. If the horizontal and vertical 
electric fields are equal in amplitude and 90o out of phase, the radiation is circularly 
polarized. Any radio wave can also be decomposed into left- and right-circular polarizations.   
  

  
  
If case1: α= 0 or π wave linear polarized.  
If case2: α= ±π/2 and  wave circularly polarized.  

If case3: α= ±π/2 and  wave elliptically polarized.  

  
If the wave is essentially random (noise generated by blackbody radiation for example), the 
two orthogonal components will vary rapidly in intensity but have equal powers when 
averaged over long times. Such radiation is called unpolarized. Blackbody radiation is 
unpolarized. Most radio astronomical sources are unpolarized or nearly so.   
Any antenna with a single output collects only one of the two polarizations from an 
electromagnetic wave. For example, a linear dipole antenna collects radiation only from the 
linear polarization whose electric field is parallel to the antenna wires. Electric fields 
perpendicular to the dipole antenna do not produce currents in the antenna, so the linear 
dipole is completely insensitive to the linear polarization perpendicular to its wires.  A pair of 
crossed dipoles is needed to collect power from both orthogonal polarizations simultaneously.  
  

Noise Temperature of Antenna:  
  
A convenient practical unit for the power output per unit frequency from a receiving antenna 
is the antenna temperature TA. Antenna temperature has nothing to do with the physical 
temperature of the antenna as measured by a thermometer; it is only the temperature of a 
matched resistor whose thermally generated power per unit frequency equals that produced 
by the antenna. It is widely used because:   
1 K of antenna temperature is a conveniently small power. TA=1 K corresponds to 
Pv=kTA=1.38×10−23 J K−1×1 K=1.38×10−23 W Hz−1.   
It can be calibrated by a direct comparison with hot and cold loads (another word for matched 
resistors) connected to the receiver input.   

  
EM field vary with time as          



The units of receiver noise are also K, so comparing the signal in K with the receiver noise in 
K makes it easy to decide if a signal will be detectable.  
  

  
An unpolarized point source of flux density S increases the antenna temperature by  

  
  
Where Aeff is the effective collecting area.  
  
  
Effective height or effective length:  
  
In telecommunication, the effective height, or effective length, of an antenna is the height of 
the antenna's centre of radiation above the ground. It is defined as the ratio of the induced 
voltage to the incident field.  
  
Receive Aperture:   
  
How can we characterize antennas used for receiving, as in radio astronomy, rather than for 
transmitting? The receiving counterpart of transmitting power gain is the effective area or 
effective collecting area of an antenna.    
Imagine an ideal antenna that collects all of the radiation falling on it from a distant point 
source and converts it to electrical power—a "rain gauge" for collecting photons.  The total 
spectral power that it collects will be the product of its geometric area A and the incident 
spectral power per unit area, or flux density S.  By analogy, if any real antenna collects 
spectral power Pv, its effective area Aeff is defined by   
  

  
Where S(matched) is the flux density in the "matched" polarization.  
  
  

Friis Equation/ Link Budget:  
  
Consider two antennae separated by a distance r. The transmitting antenna transmits a total  



  
The time-average power density at the receiving antenna is Pavg  

  
Where GDt is gain of transmitting antenna.   
  
The power received to the load is Pr   

  
  

  
This above equetion is called Friis Equation. Using this equetion we are define Link Budget 
as-  
What should be the gain of antennas?  
What should be the transmitted power?  
What should be the sensitivity of receiving antenna?  
  
Radiation Hazards:  
  
Microwave Heating Principle  
Microwave radiation causes vibration in the water molecules, which leads to friction and 
heating. The radiation effects are classified as:  
• Non-thermal  
• Thermal  
  
Current exposure safety standards are mainly based on the thermal effects, which are 
inadequate.  
Non-thermal effects are several times more harmful than thermal effects.  
  
Cell Phone - Ear Warming?  
Have you ever noticed warm sensation in ear after using mobile phone for a long time?  

power Pt. ( )   

  is effective area of receiving antenna,    is gain of  receiving antenna.   



  
  
Temperature of ear lobes increases by 10oC when cell phone is used for approx. 20 minutes.  
  

Warm sensation -> pain -> irreversible hearing loss 
 

All these effects lead to Ear Tumor
 

  
SAR and Cell Phone Use Time Limit  
  

   
A cell phone transmits 1 to 2 watts of power for calling time.  
  
Cell Phone Use Time Limit: 6 minute/day usage  
  
SAR (Specific absorption rate) - Rate at which radiation is absorbed by human body, 
measured in watts per kg (W/kg).   
  
In USA, max. SAR limit for cell phones is 1.6W/Kg which is for 6 minutes. It has a safety 
margin of 3 to 4, so a person should not use cell phone for more than 18 to 24 minutes per 
day.  
This information is not given to people in India.  
  
  

  

Ideal (Hertzian) Dipole  

A very simple radiating element we can study is the ideal dipole, also known as Hertzian 
dipole and infinitesimal dipole. It is very short (length λ), and as such has current uniformly 
distributed along its length.  
     



  

Although it is difficult to implement in practice (having a current distribution that is difficult 
to realize since it is discontinuous), it is highly useful for helping analyze larger wire 
antennas which can be subdivided into short sections having uniform current (i.e., ideal 
dipoles). Then, much in the same way as we derived vector potential for a continuous current 
distribution, we can use superposition to find the fields of a long wire antenna.  
Let’s orient the ideal dipole along the z-axis and denote the current flowing through the 
dipole as I. The current has an associated surface current density J.  
  
  

  

In this illustration, R is the distance from the current element to the field point P , and r is the 
distance from the origin to P .  
First, we need to derive the vector potential of the line source. It is a continuous current 
distribution over its length ∆l = ∆z. Since we only have a z-component of current, A will only 
have a z-component as well.  
  
Recall  
  

  
in Cartesian coordinates. Here,  

  



  
  

since the dipole is infinitely thin. Therefore,  
  

  
Evaluating the integral, we first notice that since ∆z is small, R does not change significantly 
as we move along the length of the dipole, (i.e. r ≈R). So we can effectively say that R is not 
a function of z', making the integral simple to evaluate:  

  
  

  

Now we can find the radiated magnetic field of the dipole:  

  

Since we know the analysis of point sources revealed spherical wave solutions, it is best to 
evaluate this curl in spherical coordinates. So first we need to convert A to spherical 
coordinates:  

  
  
Reminder: curl in spherical coordinates is  
  



  
  
  
  
  
Now,   

  
Next, we find the electric field from Maxwell’s curl equation:  
  

  
  
Evaluating the curl in the same manner as for the magnetic field case, we arrive at the final 
solution for E  
  

  
  

  



Now, let’s interpret the meaning of all these fields. The first situation we wish to consider is 
the so-called far field of the antenna, which is analytically defined as when r is large (r » λ)1. 
Then, all the terms with r in the denominator tend to zero, and we are left with  
  

  
What is the power radiated by the antenna? First we compute the Poynting vector of the far 
fields components,  

  
  

since E and H are orthogonal   ( ). Then,  
  

  
  
An important observation is that P rolls off as 1/r2 , indicating that a square-law in power 
density with distance (i.e. double the distances gives quadruple the loss [-6 dB]). Now we 
surround the dipole with an imaginary sphere of radius r and compute the power by taking the 
surface integral of the (radiated) power density:  
  

  
Where  

  
  
Since P is real, it is dissipated or radiated power (versus stored [imaginary] power).  
  
Let’s focus on the structure of the electric field expression in the far field for a moment, since 
the magnetic field is readily computed knowing the intrinsic impedance of the medium. We 
observe that the electric field can be expressed as follows:  
  

  



  
The expression can be separated into the product of three components:  
• Strength factor – determined solely by material parameters, magnitude of excitation current, 

and dipole length   
• Distance factor – purely the amplitude decay and phase shift incurred with distance   
• Shape factor – determined the radiation pattern of the antenna, or the part that is a function 

of θ, φ  
  
At this point it is worth comparing the far field electric and magnetic fields to the vector 

potential in (5). Notice that in the far field,   The dipole only radiates a  polarized E-field, 
but it can be shown that if it radiated in the  -polarization as well, in the far field, 

  
Also, there is no radial component of E in the far-field, nor is there a radial component in the 
vector potential. Hence, just for far-field electric and magnetic fields, we can say:  

  
These equations form a fast an easy way to determine the far-field radiated electric field, 
without going through two curl operations as we had to do before.   
We have considered the far field quantities to this point. What about the other fields? Since 

they are not in the far field, they are in the so-called near field of the antenna, or where r λ. 
Examining the expressions for E and H, under this condition the 1/rn terms dominate and we 
have:  
  

  
  
  

  



Half wave dipole basics  
The half wave dipole is formed from a conducting element which is wire or metal tube which 
is an electrical half wavelength long. The half wave dipole is normally fed in the middle 
where the impedance falls to its lowest. In this way, the antenna consists of the feeder 
connected to two quarter wavelength elements in line with each other.  
  
It should be remembered that the length of the half wave dipole is an electrical half 
wavelength for the wave travelling in the antenna conductors. This is slightly shorter than the 
equivalent length of a wave travelling in free space as the antenna conductors affect the 
wavelength.  

       
The voltage and current levels vary along the length of the radiating section of the antenna. 
This occurs because standing waves are set up along the length of the radiating element. As 
the ends are open circuit current at these points is zero, but the voltage is at its maximum. As 
the point at which these quantities is measured moves away from the ends, it is found that 
they vary sinusoidally: the voltage falling, but the current rising. The current then reaches a 
maximum and the voltage a minimum at a length equal to an electrical quarter wavelength 
from the ends. As it is a half wave dipole, this point occurs in the centre.  
  
Half wave dipole feed impedance  
One of the major considerations with any antenna is the feed arrangements – how to transfer 
the power from the feeder / transmission line in to the antenna itself. Impedance matching, 
balanced or unbalanced and many other aspects need to be considered.  
In many aspects the half wave dipole is very easy to feed. The feeder is normally connected 
to the centre point is where there is a current maximum and a voltage minimum. This results 
in the antenna presenting a low impedance to the feeder. This is much easier to feed because 
the high RF voltages associated with high impedance feed arrangements can present many 
problems for feeders and matching units.  



  

Half wave dipole radiation pattern & directivity  

It is possible to calculate the radiation pattern and hence determine the directivity. As 
might be expected the maximum half wave dipole directivity shows the maximum 
radiation at right angles to the main radiator.  
At other angles, the angle θ in the half wave dipole formula above can be used to determine 
the field strength.  

  
It is also possible to view the radiation pattern in terms of the plane looking around the dipole 
antenna, i.e. in the plane cutting the dipole in its field of maximum radiation.  
  

Construction & Working of Half-wave Dipole  
It is a normal dipole antenna, where the frequency of its operation is half of its wavelength. 
Hence, it is called as half-wave dipole antenna.  
The edge of the dipole has maximum voltage. This voltage is alternating (AC) in nature. At 
the positive peak of the voltage, the electrons tend to move in one direction and at the 
negative peak, the electrons move in the other direction. This can be explained by the figures 
given below.  



  
  
The figures given above show the working of a half-wave dipole.  
Fig 1 shows the dipole when the charges induced are in positive half cycle. Now the electrons 
tend to move towards the charge.  
Fig 2 shows the dipole with negative charges induced. The electrons here tend to move away 
from the dipole.  
Fig 3 shows the dipole with next positive half cycle. Hence, the electrons again move towards 
the charge.  
  

Applications  
The following are the applications of half-wave dipole antenna − • 

Used in radio receivers.  
• Used in television receivers.  
• When employed with others, used for wide variety of applications.  

  

Loop Antennas  
A loop antenna is a type of a radio antenna, which consists of a loop (circular electrical 
conductor) with ends connected to the transmission line. There are different types of shapes.  
They are triangular, circular, elliptical, and square shape antennas.  
Depends on loop's circumference the loop antenna is classified as two types electrically small 
and electrically large. The Schematic diagram of the small circular loop antenna with radius a 
in xyz plane is shown below.  

  



Large loop antennas  
Large loop antennas are also called as resonant antennas. They have high radiation efficiency.  
These antennas have length nearly equal to the intended wavelength.  

L=λ  

Where,  
L is the length of the antenna λ 
is the wavelength  
  
The main parameter of this antenna is its perimeter length, which is about a wavelength and 
should be an enclosed loop. It is not a good idea to meander the loop so as to reduce the size, 
as that increases capacitive effects and results in low efficiency.  

  
Small loop antennas  
Small loop antennas are also called as magnetic loop antennas. These are less resonant. These 
are mostly used as receivers.  
These antennas are of the size of one-tenth of the wavelength.  
L=λ/10  
  
Where,  
L is the length of the antenna λ 
is the wavelength  

  
The current flowing through the small circular is loop is constant and the value is given by,  
I = I0.  
The electric field around the loop antenna is computed by following expression.  

  
The formula to convert electric field intensity to the magnetic field intensity is given as 
follows.  

  
Rewrite the equation.  

  
The following features are available in small loop antenna.  
▪ Very High radiation resistance  
▪ Very less radiation frequency due to high losses present in the antennal. ▪ 
Simple in construction and available in smaller size with less weight.  

  

Radiation Pattern  
The radiation pattern of these antennas will be same as that of short horizontal dipole antenna.  
  



  
The radiation pattern for small, high-efficiency loop antennas is shown in the figure given 
above. The radiation patterns for different angles of looping are also illustrated clearly in the 
figure. The tangent line at 0° indicates vertical polarization, whereas the line with 90° 
indicates horizontal polarization.  

Applications  
The following are the applications of Loop antenna −  

• Used in RFID devices  
• Used in MF, HF and Short wave receivers  
• Used in Aircraft receivers for direction finding  
• Used in UHF transmitters  

Parabolic Reflectors  
• A parabolic reflector operates much the same way a reflecting telescope does.    
• Reflections of rays from the feed point all contribute in phase to a plane wave leaving the 

antenna along the antenna bore sight (axis)    
• Typically used at UHF and higher frequencies  

  

  
  



Applications  
  
The following are the applications of Parabolic reflector antenna −  
  

• The cassegrain feed parabolic reflector is mainly used in satellite communications.  
• Also used in wireless telecommunication systems.  

  

  
Helical antenna   
  
Helical antenna or helix antenna is the antenna in which the conducting wire is wound in 
helical shape and connected to the ground plate with a feeder line. It is the simplest antenna, 
which provides circularly polarized waves. It is used in extra-terrestrial communications in 
which satellite relays etc., are involved.  
Pitch angle is the angle between a line tangent to the helix wire and plane normal to the helix 
axis.  

  
where,  

• D is the diameter of helix.  
• S is the turn spacing (centre to centre).  
• α is the pitch angle.  

  
  

  
  

Applications  
The following are the applications of Helical antenna −  

• A single helical antenna or its array is used to transmit and receive VHF signals  



• Frequently used for satellite and space probe communications  
• Used for telemetry links with ballastic missiles and satellites at Earth stations  
• Used to establish communications between the moon and the Earth  
• Applications in radio astronomy  

  

  

Pyramidal Horn antenna  
  

Basic horn antenna concept  
  
The horn antenna may be considered as an RF transformer or impedance match between the 
waveguide feeder and free space which has an impedance of 377 ohms. By having a tapered 
or having a flared end to the waveguide the horn antenna is formed and this enables the 
impedance to be matched. Although the waveguide will radiate without a horn antenna, this 
provides a far more efficient match.  

  
In addition to the improved match provided by the horn antenna, it also helps suppress signals 
travelling via unwanted modes in the waveguide from being radiated.  
However the main advantage of the horn antenna is that it provides a significant level of 
directivity and gain. For greater levels of gain the horn antenna should have a large aperture. 
Also to achieve the maximum gain for a given aperture size, the taper should be long so that 
the phase of the wave-front is as nearly constant as possible across the aperture. However 
there comes a point where to provide even small increases in gain, the increase in length 
becomes too large to make it sensible. Thus gain levels are a balance between aperture size 
and length. However gain levels for a horn antenna may be up to 20 dB in some instances. 
When the horn needs to be used with coax, a small section of waveguide is required in which 
a waveguide to coax transition is located.  
  
There are several horn configurations out of which, three configurations are most commonly 
used.  

Sectoral horn  
This type of horn antenna, flares out in only one direction. Flaring in the direction of Electric 
vector produces the sectorial E-plane horn. Similarly, flaring in the direction of Magnetic 
vector, produces the sectorial H-plane horn.  



Pyramidal horn  
This type of horn antenna has flaring on both sides. If flaring is done on both the E & H walls 
of a rectangular waveguide, then pyramidal horn antenna is produced. This antenna has the 
shape of a truncated pyramid.  

Conical horn  
When the walls of a circular wave guide are flared, it is known as a conical horn. This is a 
logical termination of a circular wave guide.  
  

  
Applications  
  
The following are the applications of Horn antenna − • 

Used for astronomical studies  

• Used in microwave applications  
  

Yagi-Uda antenna  
  

The Yagi-Uda antenna or Yagi Antenna is one of the most brilliant antenna designs. It is 
simple to construct and has a high gain, typically greater than 10 dB. The Yagi-Uda antennas 
typically operate in the HF to UHF bands (about 3 MHz to 3 GHz), although their bandwidth 
is typically small, on the order of a few percent of the center frequency. You are probably 
familiar with this antenna, as they sit on top of roofs everywhere. TV antennas are still a 
major application of the Yagi antenna.   
  

• Driven element induces currents in parasitic elements    
• When a parasitic element is slightly longer than  λ/2, the element acts inductively and 

thus as a reflector -current phased to reinforce radiation in the maximum direction and 
cancel in the opposite direction .  



• The director element is slightly  shorter than λ/2, the element acts inductively and thus 
as a director -current phased to reinforce radiation in the maximum direction and 
cancel in the opposite direction   • The elements are separated by   ≈0.25  

  
Module –4  

Reflection of plane wave at Normal and Oblique incidence; Diffraction and Scattering Phenomena, 
multipath fading and its characteristics.  

  

Reflection of plane wave at Normal and Oblique incidence  

  

  

We define region 1 (ε 1, µ1) as the half-space for which z < 0; region 2 (ε 2, µ2) is the half-space for 
which z > 0. Initially we establish a wave in region 1, traveling in the +z direction, and linearly 
polarized along x.  

  

Associated magnetic field in the y direction  

  

This uniform plane wave in region l that is traveling toward the boundary surface at z = 0 is called the 
incident wave. Since the direction of propagation of the incident wave is perpendicular to the 
boundary plane, we describe it as normal incidence.  Energy may be transmitted across the boundary 
surface at z = 0 into region 2 by providing a wave moving in the +z direction in that medium. The 
phasor electric and magnetic fields for this wave are  

  



This wave, which moves away from the boundary surface into region 2, is called the transmitted wave. 
Note the use of the different propagation constant k2 and intrinsic impedance η2. To satisfy the boundary 
conditions at z = 0 with these assumed fields. With E polarized along x, the field is tangent to the 
interface, and therefore the E fields in regions l and 2 must be equal at z = 0. Setting z = 0 and would 
require that Ex10 + = Ex20+. H, being y-directed, is also a tangential field, and must be continuous across 
the boundary (no current sheets are present in real media). When we let z = 0 we find that we must have 
Ex10+/η1 = Ex20+/η2. Since E x10+ = Ex20+, then η1 = η2. But this is a very special condition that does not 
fit the facts in general, and we are therefore unable to satisfy the boundary conditions with only an 
incident and a transmitted wave.  

We require a wave traveling away from the boundary in region 1, as shown in Figure; this is the 
reflected wave,  

  

where Ex10- may be a complex quantity. Because this field is traveling in the –z direction.  

The ratio of the amplitudes of the reflected and incident electric fields defines the reflection 
coefficient, designated by   

  

  

  

  
Plane Wave Reflection at Oblique Incidence Angle  

  

The situation is illustrated in Figure in which the incident wave direction and position-dependent phase 
are characterized by wavevector k+ 1 . The angle of incidence is the angle between k+ 1 and a line 



that is normal to the surface (the x axis in this case). The incidence angle is shown as θ1. The reflected 
wave, characterized by wavevector k- 1 , will propagate away from the interface at angle θ1. Finally, 
the transmitted wave, characterized by k2, will propagate into the second region at angle θ2 as shown. 
One would suspect (from previous experience) that the incident and reflected angles are equal (θ1 = 
θ1), which is correct. We need to show this, however, to be complete. The two media are lossless 
dielectrics, characterized by intrinsic impedances η1 and η2. We will assume, as before, that the 
materials are nonmagnetic, and thus have permeability µ0. Consequently, the materials are adequately 
described by specifying their dielectric constants, r1 and r2, or their refractive indices, n1 = √ εr1 and 
n2 = √ εr2.  

  

  


