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Course Objective:   
This course provides a basic understanding of the fundamental theories and laws of information theory and 
coding theory and the construction of both source codes and error-detection-correction codes and application 
in digital communication systems  
  
  
Course Outcome  

The course outcomes are to enable the students to:  
  
CO.EC602.1  Understand the concepts of information, mutual information and entropy and various source 

coding techniques for a reliable digital communication system  
CO.EC602.2  Analyze the need for error control techniques in a digital communication system 

channel models, channel capacity and channel coding techniques.    
CO.EC602.3  Apply linear algebra, concept of Galois field, conjugate roots, minimal polynomial 

in channel coding techniques for error control.    
CO.EC602.4  Generate different error control codes like linear block codes, cyclic codes, BCH codes, and 

perform error detection and correction.   
CO.EC602.5  Design the circuit for different error control coding techniques.    
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Module No. 1             
                                    

Source Coding   
  
  
  
During the late 1920s, Harry Nyquist and Ralph Hartley developed a handful of fundamental ideas related to 
the transmission of information, particularly in the context of the telegraph as a communications system. At 
the time, these concepts were powerful breakthroughs individually, but they were not part of a comprehensive 
theory. In the 1940s, Claude Shannon developed the concept of channel capacity, based in part on the ideas 
of Nyquist and Hartley, and then formulated a complete theory of information and its transmission.   
  
  

Uncertainty   
  
Uncertainty is a situation which involves imperfect or unknown information. It applies to predictions of 
future events, to physical measurements that are already made, or to the unknown. Uncertainty arises in 
partially observable and/or stochastic environments, as well as due to ignorance, indolence, or both.[1] It 
arises in any number of fields, including insurance, philosophy, physics, statistics, economics, finance, 
psychology, sociology, engineering, metrology, meteorology, ecology and information science.   
  
For example, if it is unknown whether or not it will rain tomorrow, then there is a state of uncertainty. If 
probabilities are applied to the possible outcomes using weather forecasts or even just a calibrated probability 
assessment, the uncertainty has been quantified. Suppose it is quantified as a 90% chance of sunshine. If there 
is a major, costly, outdoor event planned for tomorrow then there is a risk since there is a 10% chance of rain, 
and rain would be undesirable. Furthermore, if this is a business event and $100,000 would be lost if it rains, 
then the risk has been quantified (a 10% chance of losing $100,000). These situations can be made even more 
realistic by quantifying light rain vs. heavy rain, the cost of delays vs. outright cancellation, etc.[citation 
needed]   

Some may represent the risk in this example as the "expected opportunity loss" (EOL) or the chance of the 
loss multiplied by the amount of the loss (10% × $100,000 = $10,000). That is useful if the organizer of the 
event is "risk neutral", which most people are not. Most would be willing to pay a premium to avoid the loss. 
An insurance company, for example, would compute an EOL as a minimum for any insurance coverage, then 
add onto that other operating costs and profit. Since many people are willing to buy insurance for many 
reasons, then clearly the EOL alone is not the perceived value of avoiding the risk.   
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Quantitative uses of the terms uncertainty and risk are fairly consistent from fields such as probability theory, 
actuarial science, and information theory. Some also create new terms without substantially changing the 
definitions of uncertainty or risk. For example, surprisal is a variation on uncertainty sometimes used in 
information theory. But outside of the more mathematical uses of the term, usage may vary widely. In 
cognitive psychology, uncertainty can be real, or just a matter of perception, such as expectations, threats, 
etc.   
  

Information  
Information is any entity or form that provides the answer to a question of some kind or resolves uncertainty. 
It is thus related to data and knowledge, as data represents values attributed to parameters, and knowledge 
signifies understanding of real things or abstract concepts. [1] As it regards data, the information's existence 
is not necessarily coupled to an observer (it exists beyond an event horizon, for example), while in the case 
of knowledge, the information requires a cognitive observer.   

Information is conveyed either as the content of a message or through direct or indirect observation. That 
which is perceived can be construed as a message in its own right, and in that sense, information is always 
conveyed as the content of a message.   

Information can be encoded into various forms for transmission and interpretation (for example, information 
may be encoded into a sequence of signs, or transmitted via a signal). It can also be encrypted for safe storage 
and communication.   

Information reduces uncertainty. The uncertainty of an event is measured by its probability of occurrence and 

is inversely proportional to that. The more uncertain an event, the more information is required to resolve 

uncertainty of that event. The bit is a typical unit of information, but other units such as the nat may be used. 

For example, the information encoded in one "fair" coin flip is log2(2/1) = 1 bit, and in two fair coin flips is 

log2(4/1) = 2 bits.   

The concept that information is the message has different meanings in different contexts. [2] Thus the concept 
of information becomes closely related to notions of constraint, communication, control, data, form, 
education, knowledge, meaning, understanding, mental stimuli, pattern, perception, representation, and 
entropy.   

  
In information theory, information is taken as an ordered sequence of symbols from an alphabet, say an input 
alphabet χ, and an output alphabet ϒ. Information processing consists of an input-output function that maps 
any input sequence from χ into an output sequence from ϒ. The mapping may be probabilistic or 
deterministic. It may have memory or be memoryless. [3]  
  
Information theory studies the quantification, storage, and communication of information. It was originally 
proposed by Claude E. Shannon in 1948 to find fundamental limits on signal processing and communication 
operations such as data compression, in a landmark paper entitled "A Mathematical Theory of 
Communication". Applications of fundamental topics of information theory include lossless data compression 
(e.g. ZIP files), lossy data compression (e.g. MP3s and JPEGs), and channel coding (e.g. for digital subscriber 
line (DSL)). Its impact has been crucial to the success of the Voyager missions to deep space, the invention 



  

INFORMATION THEORY & CODING. EC602  

  

of the compact disc, the feasibility of mobile phones, the development of the Internet, the study of linguistics 
and of human perception, the understanding of black holes, and numerous other fields.   

A key measure in information theory is "entropy". Entropy quantifies the amount of uncertainty involved in 
the value of a random variable or the outcome of a random process. For example, identifying the outcome of 
a fair coin flip (with two equally likely outcomes) provides less information (lower entropy) than specifying 
the outcome from a roll of a die (with six equally likely outcomes). Some other important measures in 
information theory are mutual information, channel capacity, error exponents, and relative entropy.   

The field is at the intersection of mathematics, statistics, computer science, physics, neurobiology, information 
engineering, and electrical engineering. The theory has also found applications in other areas, including 
statistical inference, natural language processing, cryptography, neurobiology,[1] human vision,[2] the 
evolution[3] and function[4] of molecular codes (bioinformatics), model selection in statistics,[5] thermal 
physics,[6] quantum computing, linguistics, plagiarism detection,[7] pattern recognition, and anomaly 
detection.[8] Important sub-fields of information theory include source coding, channel coding, algorithmic 
complexity theory, algorithmic information theory, information-theoretic security, and measures of 
information.   

Information theory is based on probability theory and statistics. Information theory often concerns itself with 
measures of information of the distributions associated with random variables. Important quantities of 
information are entropy, a measure of information in a single random variable, and mutual information, a 
measure of information in common between two random variables. The former quantity is a property of the 
probability distribution of a random variable and gives a limit on the rate at which   

data generated by independent samples with the given distribution can be reliably compressed. The latter is a 
property of the joint distribution of two random variables, and is the maximum rate of reliable communication 
across a noisy channel in the limit of long block lengths, when the channel statistics are determined by the 
joint distribution.   

The choice of logarithmic base in the following formulae determines the unit of information entropy that is 

used. A common unit of information is the bit, based on the binary logarithm. Other units include the nat, 

which is based on the natural logarithm, and the decimal digit, which is based on the common logarithm.  In 

what follows, an expression of the form p log p is considered by convention to be equal to zero whenever  

p = 0. This is justified because  for any logarithmic base.   
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Entropy of an information source  
Based on the probability mass function of each source symbol to be communicated, the Shannon entropy H, 
in units of bits (per symbol), is given by   

  

where pi is the probability of occurrence of the i-th possible value of the source symbol. This equation gives 

the entropy in the units of "bits" (per symbol) because it uses a logarithm of base 2, and this base-2 measure 

of entropy has sometimes been called the "shannon" in his honor. Entropy is also commonly computed 

using the natural logarithm (base e, where e is Euler's number), which produces a measurement of entropy in 

"nats" per symbol and sometimes simplifies the analysis by avoiding the need to include extra constants in 

the formulas. Other bases are also possible, but less commonly used. For example, a logarithm of base 28  

= 256 will produce a measurement in bytes per symbol, and a logarithm of base 10 will produce a 
measurement in decimal digits (or hartleys) per symbol.   

Intuitively, the entropy HX of a discrete random variable X is a measure of the amount of uncertainty 

associated with the value of X when only its distribution is known.   

The entropy of a source that emits a sequence of N symbols that are independent and identically distributed 
(iid) is N·H bits (per message of N symbols). If the source data symbols are identically distributed but not 
independent, the entropy of a message of length N will be less than N·H.   

   
The entropy of a Bernoulli trial as a function of success probability, often called the binary entropy function, 

Hb(p). The entropy is maximized at 1 bit per trial when the two possible outcomes are equally probable, as 

in an unbiased coin toss.  

If one transmits 1000 bits (0s and 1s), and the value of each of these bits is known to the receiver (has a 
specific value with certainty) ahead of transmission, it is clear that no information is transmitted. If, 
however, each bit is independently equally likely to be 0 or 1, 1000 shannons of information (more often 
called bits) have been transmitted. Between these two extremes, information can be quantified as follows. If 
𝕏 is the set of all messages {x1, …, xn} that X could be, and p(x) is the probability of some  
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,   

then the entropy, H, of X is defined:[9]   

(Here, I(x) is the self-information, which is the entropy contribution of an individual message, and 𝔼X is the 

expected value.) A property of entropy is that it is maximized when all the messages in the message space 

are equiprobable p(x) = 1/n; i.e., most unpredictable, in which case H(X) = log n.   

The special case of information entropy for a random variable with two outcomes is the binary entropy 
function, usually taken to the logarithmic base 2, thus having the shannon (Sh) as unit:   

Hb(P)= -plog 2  p-(1-p)log 2 p.  

Joint entropy  
The joint entropy of two discrete random variables X and Y is merely the entropy of their pairing: (X, Y).  
This implies that if X and Y are independent, then their joint entropy is the sum of their individual entropies.   

For example, if (X, Y) represents the position of a chess piece — X the row and Y the column, then the joint 
entropy of the row of the piece and the column of the piece will be the entropy of the position of the piece.   

  
  

Despite similar notation, joint entropy should not be confused with cross entropy.   

Conditional entropy (equivocation)  
The conditional entropy or conditional uncertainty of X given random variable Y (also called the equivocation 
of X about Y) is the average conditional entropy over Y:[10]   

 
  

Because entropy can be conditioned on a random variable or on that random variable being a certain value, 
care should be taken not to confuse these two definitions of conditional entropy, the former of which is in 
more common use. A basic property of this form of conditional entropy is that:   
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Mutual information (transinformation)  
Mutual information measures the amount of information that can be obtained about one random variable by 
observing another. It is important in communication where it can be used to maximize the amount of 
information shared between sent and received signals. The mutual information of X relative to Y is given by:   

  

 
where SI (Specific mutual Information) is the pointwise mutual information.   

A basic property of the mutual information is that  

  
  

That is, knowing Y, we can save an average of I(X; Y) bits in encoding X compared to not knowing Y.   

Mutual information is symmetric:   

  

Mutual information can be expressed as the average Kullback–Leibler divergence (information gain) between 
the posterior probability distribution of X given the value of Y and the prior distribution on X:   

   

In other words, this is a measure of how much, on the average, the probability distribution on X will change 
if we are given the value of Y. This is often recalculated as the divergence from the product of the marginal 
distributions to the actual joint distribution:   

  

   

Mutual information is closely related to the log-likelihood ratio test in the context of contingency tables and 

the multinomial distribution and to Pearson's χ2 test: mutual information can be considered a statistic for 

assessing independence between a pair of variables, and has a well-specified asymptotic distribution.   

Source coding theorem  

In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the 
limits to possible data compression, and the operational meaning of the Shannon entropy.   

The source coding theorem shows that (in the limit, as the length of a stream of independent and identically-
distributed random variable (i.i.d.) data tends to infinity) it is impossible to compress the data such that the 
code rate (average number of bits per symbol) is less than the Shannon entropy of the source, without it being 
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virtually certain that information will be lost. However it is possible to get the code rate arbitrarily close to 
the Shannon entropy, with negligible probability of loss.   

The source coding theorem for symbol codes places an upper and a lower bound on the minimal possible 
expected length of codewords as a function of the entropy of the input word (which is viewed as a random 
variable) and of the size of the target alphabet.    

The Code produced by a discrete memoryless source, has to be efficiently represented, which is an important 
problem in communications. For this to happen, there are code words, which represent these source codes.  

For example, in telegraphy, we use Morse code, in which the alphabets are denoted by Marks and Spaces. If 

the letter E is considered, which is mostly used, it is denoted by “.” Whereas the letter Q which is rarely used, 

is denoted by “--.-”  

Let us take a look at the block diagram.  

   

Where Sk is the output of the discrete memoryless source and bk is the output of the source encoder which is 

represented by 0s and 1s.  

The encoded sequence is such that it is conveniently decoded at the receiver.  

Let us assume that the source has an alphabet with k different symbols and that the kth symbol Sk occurs with 

the probability Pk, where k = 0, 1…k-1.  

Let the binary code word assigned to symbol Sk, by the encoder having length lk, measured in bits.  

Hence, we define the average code word length L of the source encoder as  

L¯¯¯¯=∑k=0k−1pklk  

L represents the average number of bits per source symbol  

If Lmin=minimumpossiblevalueofL¯¯¯¯ Then 

coding efficiency can be defined as 

η=LminL¯¯¯¯  

With L¯¯¯¯≥Lmin we 

will have η≤1  
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However, the source encoder is considered efficient when η=1 

For this, the value Lmin has to be determined.  

Let us refer to the definition, “Given a discrete memoryless source of entropy H(δ)  

, the average code-word length L for any source encoding is bounded as L¯¯¯¯≥H(δ)  

."  

In simpler words, the code word (example: Morse code for the word QUEUE is -.- ..- . ..- . ) is always greater 
than or equal to the source code (QUEUE in example). Which means, the symbols in the code word are 
greater than or equal to the alphabets in the source code.  

Hence with Lmin=H(δ)  
, the efficiency of the source encoder in terms of Entropy H(δ) 

may be written as η=H(δ)L¯¯¯¯  

This source coding theorem is called as noiseless coding theorem as it establishes an error-free encoding. It 

is also called as Shannon’s first theorem.  

  

Source coding is a mapping from (a sequence of) symbols from an information source to a sequence of 
alphabet symbols (usually bits) such that the source symbols can be exactly recovered from the binary bits 
(lossless source coding) or recovered within some distortion (lossy source coding). This is the concept behind 
data compression.   

Source coding theorem  
In information theory, the source coding theorem  informally states that   

N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible 
risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is 
virtually certain that information will be lost.  

Source coding theorem for symbol codes  

Let Σ1, Σ2 denote two finite alphabets and let Σ∗1 and Σ∗2 denote the set of all finite words from those 

alphabets (respectively).   

Suppose that X is a random variable taking values in Σ1 and let  f  be a uniquely decodable code from Σ∗1 to 

Σ∗2 where |Σ2| = a. Let S denote the random variable given by the length of codeword  f (X).   

If  f  is optimal in the sense that it has the minimal expected word length 
for X, then (Shannon 1948):   
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Proof: Source coding theorem  
Given X is an i.i.d. source, its time series X1, ..., Xn is i.i.d. with entropy H(X) in the discrete-valued case and 

differential entropy in the continuous-valued case. The Source coding theorem states that for any ε > 0, i.e. 

for any rate H(X) + ε larger than the entropy of the source, there is large enough n and an encoder that takes 

n i.i.d. repetition of the source, X1:n, and maps it to n(H(X) + ε) binary bits such that the source symbols X1:n 

are recoverable from the binary bits with probability at least 1 − ε.   

 Proof  of  
Achievability.  Fix  

some ε > 0, and 
let   

  

The typical set, Aεn, is defined as follows:   

  

 

The Asymptotic Equipartition Property (AEP) shows that for large enough n, the probability that a sequence 
generated by the source lies in the typical set, Aε n, as defined approaches one. In particular, for sufficiently 
large n,              

  

 can be made arbitrarily close to 1, and 
specifically, greater than  (See AEP for 
a proof).   

The definition of typical sets implies that those sequences that lie in the typical set satisfy:   

Note that:   

The probability of a sequence being drawn from Aε  
n is greater than 1 − ε.   

  
 , which follows from the left hand side (lower bound) for .  

  
  

  , which follows from upper bound for             
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and the lower bound on the total probability of the whole 

set Aεn.  Since   bits are enough to point to any string in 
this set.   

  

The encoding algorithm: The encoder checks if the input sequence lies within the typical set; if yes, it 
outputs the index of the input sequence within the typical set; if not, the encoder outputs an arbitrary n(H(X) 
+ ε) digit number. As long as the input sequence lies within the typical set (with probability at least 1 − ε), 
the encoder doesn't make any error. So, the probability of error of the encoder is bounded above by ε.   

  

  

Proof of Converse. The converse is proved by showing that any set of size smaller than Aε n 
(in the sense of exponent) would cover a set of probability bounded away from 1.   

Proof: Source coding theorem for symbol codes  

For 1 ≤ i ≤ n let si denote the word length of each possible xi.   
Define   , where C is chosen so that q1 + ... + qn = 1. Then   

 
  

where the second line follows from Gibbs' inequality and the fifth line follows from Kraft's inequality:   
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so log C ≤ 0.   

For the second inequality we may set   

  

so that   

   

and so   

  

and   

  
and so by Kraft's inequality there exists a prefix-free code having those word lengths. Thus the minimal S 
satisfies   

 
  

Extension to non-stationary independent sources  

Fixed Rate lossless source coding for discrete time non-stationary independent sources  

Define typical set Aεn as:   

  

  

Then, for given δ > 0, for n large enough, Pr(Aεn) > 1 − δ. Now we just encode the sequences in the typical  

set, and usual methods in source coding show 
that the cardinality of this set is smaller than .   

  

Thus, on an average, Hn(X) + ε bits suffice for encoding with probability greater than 1 − δ, where ε and δ can 

be made arbitrarily small, by making n larger.   
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Source coding technique  
In signal processing, data compression, source coding, or bit-rate reduction involves encoding 
information using fewer bits than the original representation. Compression can be either lossy or lossless. 
Lossless compression reduces bits by identifying and eliminating statistical redundancy. No information is 
lost in lossless compression. Lossy compression reduces bits by removing unnecessary or less important 
information.  

The process of reducing the size of a data file is often referred to as data compression. In the context of data 
transmission, it is called source coding; encoding done at the source of the data before it is stored or 
transmitted.[4] Source coding should not be confused with channel coding, for error detection and 
correction or line coding, the means for mapping data onto a signal.   

Compression is useful because it reduces resources required to store and transmit data. Computational 
resources are consumed in the compression process and, usually, in the reversal of the process 
(decompression). Data compression is subject to a space–time complexity trade-off. For instance, a 
compression scheme for video may require expensive hardware for the video to be decompressed fast 
enough to be viewed as it is being decompressed, and the option to decompress the video in full before 
watching it may be inconvenient or require additional storage. The design of data compression schemes 
involves trade-offs among various factors, including the degree of compression, the amount of distortion 
introduced (when using lossy data compression), and the computational resources required to compress and 
decompress the data.  

  

Entropy encoding  

In information theory an entropy encoding is a lossless data compression scheme that is independent of the 
specific characteristics of the medium.   

One of the main types of entropy coding creates and assigns a unique prefix-free code to each unique symbol 
that occurs in the input. These entropy encoders then compress data by replacing each fixed-length input 
symbol with the corresponding variable-length prefix-free output codeword. The length of each codeword is 
approximately proportional to the negative logarithm of the probability. Therefore, the most common symbols 
use the shortest codes.   

According to Shannon's source coding theorem, the optimal code length for a symbol is −logbP, where b is 

the number of symbols used to make output codes and P is the probability of the input symbol.   

Two of the most common entropy encoding techniques are Huffman coding and arithmetic coding.[1] If the 
approximate entropy characteristics of a data stream are known in advance (especially for signal 
compression), a simpler static code may be useful. These static codes include universal codes (such as Elias 
gamma coding or Fibonacci coding) and Golomb codes (such as unary coding or Rice coding).   

Since 2014, data compressors have started using the Asymmetric Numeral Systems family of entropy coding 
techniques, which allows combination of the compression ratio of arithmetic coding with a processing cost 
similar to Huffman coding.   
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Huffman Coding   

Huffman coding is based on the frequency of occurance of a data item (pixel in images). The principle is to 
use a lower number of bits to encode the data that occurs more frequently. Codes are stored in a Code Book 
which may be constructed for each image or a set of images. In all cases the code book plus encoded data 
must be transmitted to enable decoding.   

The Huffman algorithm is now briefly summarised:   

• A bottom-up approach   

1. Initialization: Put all nodes in an OPEN list, keep it sorted at all times (e.g., ABCDE).   

2. Repeat until the OPEN list has only one node left:   

(a) From OPEN pick two nodes having the lowest frequencies/probabilities, create a parent node of them.   

(b) Assign the sum of the children's frequencies/probabilities to the parent node and insert it into OPEN.   

(c) Assign code 0, 1 to the two branches of the tree, and delete the children from OPEN.   

   

      Symbol   Count   log(1/p)     Code     Subtotal (# of bits)  
     ------   -----   --------   ---------  --------------------         
A      15       1.38          0             15  

B 7       2.48        100             21  
C 6       2.70        101             18  
D 6       2.70        110             18  
E 5       2.96        111             15  

                                 TOTAL (# of bits): 87  

The following points are worth noting about the above algorithm:   

• Decoding for the above two algorithms is trivial as long as the coding table (the statistics) is sent 
before the data. (There is a bit overhead for sending this, negligible if the data file is big.)   

• Unique Prefix Property: no code is a prefix to any other code (all symbols are at the leaf nodes) -> 
great for decoder, unambiguous.   
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• If prior statistics are available and accurate, then Huffman coding is very good.   

In the above example:   

Number of bits needed for Huffman Coding is: 87 / 39 = 2.23  

  

The Shannon-Fano Coding  

This is a basic information theoretic algorithm. A simple example will be used to illustrate the algorithm:   

       Symbol     A    B    C    D    E  
      ----------------------------------        
Count     15    7    6    6    5  

Encoding for the Shannon-Fano Algorithm:   

• A top-down approach   

1. Sort symbols according to their frequencies/probabilities, e.g., ABCDE.   

2. Recursively divide into two parts, each with approx. same number of counts.   

   

      Symbol   Count   log(1/p)     Code     Subtotal (# of bits)  
     ------   -----   --------   ---------  --------------------         
A      15       1.38          00              30  

B 7       2.48         01             14  
C 6       2.70         10             12  
D 6       2.70        110             18         E       5       2.96        111             15  

                                 TOTAL (# of bits): 89  

  

  

  

 Module No. 2       
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Channel Capacity and Coding  
  

  

Channel Models  
  
In a digital channel model, the transmitted message is modelled as a digital signal at a certain protocol layer. 
Underlying protocol layers, such as the physical layer transmission technique, is replaced by a simplified 
model. The model may reflect channel performance measures such as bit rate, bit errors, latency/delay, 
delay jitter, etc. Examples of digital channel models are:   
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nnel Capacity  
In information theory, the Shannon–Hartley theorem tells the maximum rate at which information can be 
transmitted over a communications channel of a specified bandwidth in the presence of noise. It is an 
application of the noisy-channel coding theorem to the archetypal case of a continuous-time analog 
communications channel subject to Gaussian noise. The theorem establishes Shannon's channel capacity for 
such a communication link, a bound on the maximum amount of error-free information per time unit that can 
be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal 
power is bounded, and that the Gaussian noise process is characterized by a known power or power spectral 
density. The law is named after Claude Shannon and Ralph Hartley.   

Statement of the theorem  

The Shannon–Hartley theorem states the channel capacity C, meaning the theoretical tightest upper bound on 
the information rate of data that can be communicated at an arbitrarily low error rate using an average received 
signal power S through an analog communication channel subject to additive white Gaussian noise of power 
N:   

 

where   

C is the channel capacity in bits per second, a theoretical upper bound on the net bit rate (information rate, 
sometimes denoted I) excluding error-correction codes;   
B is the bandwidth of the channel in hertz (passband bandwidth in case of a bandpass signal);   
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S is the average received signal power over the bandwidth (in case of a carrier-modulated passband 
transmission, often denoted C), measured in watts (or volts squared);   
N is the average power of the noise and interference over the bandwidth, measured in watts (or volts squared); 
and   
S/N is the signal-to-noise ratio (SNR) or the carrier-to-noise ratio (CNR) of the communication signal to the 
noise and interference at the receiver (expressed as a linear power ratio, not as logarithmic decibels).  

Nyquist rate  

Main article: Nyquist rate  

In 1927, Nyquist determined that the number of independent pulses that could be put through a telegraph 

channel per unit time is limited to twice the bandwidth of the channel. In symbols,   
  

where fp is the pulse frequency (in pulses per second) and B is the bandwidth (in hertz). The quantity 2B later 

came to be called the Nyquist rate, and transmitting at the limiting pulse rate of 2B pulses per second as 

signalling at the Nyquist rate. Nyquist published his results in 1928 as part of his paper "Certain topics in 

Telegraph Transmission Theory."   

Hartley's law  
During 1928, Hartley formulated a way to quantify information and its line rate (also known as data signalling 
rate R bits per second).[1] This method, later known as Hartley's law, became an important precursor for 
Shannon's more sophisticated notion of channel capacity.   

Hartley argued that the maximum number of distinguishable pulse levels that can be transmitted and received 
reliably over a communications channel is limited by the dynamic range of the signal amplitude and the 
precision with which the receiver can distinguish amplitude levels. Specifically, if the amplitude of the 
transmitted signal is restricted to the range of [−A ... +A] volts, and the precision of the receiver is ±ΔV volts, 
then the maximum number of distinct pulses M is given by   

 

By taking information per pulse in bit/pulse to be the base-2-logarithm of the number of distinct messages M 
 that  could  be  sent,  Hartley[2]  

constructed a measure of the line rate R as:   
  

where fp is the pulse rate, also known as the symbol rate, in symbols/second or baud.   
Hartley then combined the above quantification with Nyquist's observation that the number of independent 
pulses that could be put through a channel of bandwidth B hertz was 2B pulses per second, to arrive at his 
quantitative measure for achievable line rate.   
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Hartley's law is sometimes quoted as just a proportionality between the analog bandwidth, B, in Hertz and 
what today is called the digital bandwidth, R, in bit/s.[3] Other times it is quoted in this more quantitative 
form, as an achievable line rate of R bits per second:[4]   

   

Hartley did not work out exactly how the number M should depend on the noise statistics of the channel, or 
how the communication could be made reliable even when individual symbol pulses could not be reliably 
distinguished to M levels; with Gaussian noise statistics, system designers had to choose a very conservative 
value of M to achieve a low error rate.   

The concept of an error-free capacity awaited Claude Shannon, who built on Hartley's observations about a 
logarithmic measure of information and Nyquist's observations about the effect of bandwidth limitations.   

Hartley's rate result can be viewed as the capacity of an errorless M-ary channel of 2B symbols per second. 
Some authors refer to it as a capacity. But such an errorless channel is an idealization, and if M is chosen 
small enough to make the noisy channel nearly errorless, the result is necessarily less than the Shannon 
capacity of the noisy channel of bandwidth B, which is the Hartley–Shannon result that followed later.   

Noisy channel coding theorem and capacity  
Main article: Noisy-channel coding theorem  

Claude Shannon's development of information theory during World War II provided the next big step in 
understanding how much information could be reliably communicated through noisy channels. Building on 
Hartley's foundation, Shannon's noisy channel coding theorem (1948) describes the maximum possible 
efficiency of error-correcting methods versus levels of noise interference and data corruption.[5][6] The proof 
of the theorem shows that a randomly constructed error-correcting code is essentially as good as the best 
possible code; the theorem is proved through the statistics of such random codes.   

Shannon's theorem shows how to compute a channel capacity from a statistical description of a channel, and 
establishes that given a noisy channel with capacity C and information transmitted at a line rate R, then if   

   

there exists a coding technique which allows the probability of error at the receiver to be made arbitrarily 
small. This means that theoretically, it is possible to transmit information nearly without error up to nearly a 
limit of C bits per second.   

The converse is also important. If   

   

the probability of error at the receiver increases without bound as the rate is increased. So no useful 
information can be transmitted beyond the channel capacity. The theorem does not address the rare situation 
in which rate and capacity are equal.   

The Shannon–Hartley theorem establishes what that channel capacity is for a finite-bandwidth 
continuoustime channel subject to Gaussian noise. It connects Hartley's result with Shannon's channel 
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capacity theorem in a form that is equivalent to specifying the M in Hartley's line rate formula in terms of a 
signalto-noise ratio, but achieving reliability through error-correction coding rather than through reliably 
distinguishable pulse levels.   

If there were such a thing as a noise-free analog channel, one could transmit unlimited amounts of errorfree 
data over it per unit of time (Note: An infinite-bandwidth analog channel can't transmit unlimited amounts of 
error-free data, without infinite signal power). Real channels, however, are subject to limitations imposed by 
both finite bandwidth and nonzero noise.   

Bandwidth and noise affect the rate at which information can be transmitted over an analog channel. 
Bandwidth limitations alone do not impose a cap on the maximum information rate because it is still possible 
for the signal to take on an indefinitely large number of different voltage levels on each symbol pulse, with 
each slightly different level being assigned a different meaning or bit sequence. Taking into account both 
noise and bandwidth limitations, however, there is a limit to the amount of information that can be transferred 
by a signal of a bounded power, even when sophisticated multi-level encoding techniques are used.   

In the channel considered by the Shannon–Hartley theorem, noise and signal are combined by addition. That 
is, the receiver measures a signal that is equal to the sum of the signal encoding the desired information and 
a continuous random variable that represents the noise. This addition creates uncertainty as to the original 
signal's value. If the receiver has some information about the random process that generates the noise, one 
can in principle recover the information in the original signal by considering all possible states of the noise 
process. In the case of the Shannon–Hartley theorem, the noise is assumed to be generated by a Gaussian 
process with a known variance. Since the variance of a Gaussian process is equivalent to its power, it is 
conventional to call this variance the noise power.   

Such a channel is called the Additive White Gaussian Noise channel, because Gaussian noise is added to the 
signal; "white" means equal amounts of noise at all frequencies within the channel bandwidth. Such noise 
can arise both from random sources of energy and also from coding and measurement error at the sender and 
receiver respectively. Since sums of independent Gaussian random variables are themselves Gaussian random 
variables, this conveniently simplifies analysis, if one assumes that such error sources are also Gaussian and 
independent.   

Comparison of Shannon's capacity to Hartley's law  

Comparing the channel capacity to the information rate from Hartley's law, we can find the effective number 
of distinguishable levels M:[7]   
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The square root effectively converts the power ratio back to a voltage ratio, so the number of levels is 
approximately proportional to the ratio of signal RMS amplitude to noise standard deviation.   

This similarity in form between Shannon's capacity and Hartley's law should not be interpreted to mean that 
M pulse levels can be literally sent without any confusion. More levels are needed to allow for redundant 
coding and error correction, but the net data rate that can be approached with coding is equivalent to using 
that M in Hartley's law.   

Alternative forms  

Frequency-dependent (colored noise) case  
In the simple version above, the signal and noise are fully uncorrelated, in which case S + N is the total power 

of the received signal and noise together. A generalization of the above equation for the case  where the 

additive noise is not white (or that the S/N  is not constant with frequency over the bandwidth) is obtained by 

treating the channel as many narrow, independent  

Gaussian channels in parallel:   

  

where   

C is the channel capacity in bits per second;   
B is the bandwidth of the channel in Hz;   
S(f)  is the signal power spectrum  
N(f)  is the noise power spectrum  f 
is frequency in Hz.  

Note: the theorem only applies to Gaussian stationary process noise. This formula's way of introducing 
frequency-dependent noise cannot describe all continuous-time noise processes. For example, consider a 
noise process consisting of adding a random wave whose amplitude is 1 or −1 at any point in time, and a 
channel that adds such a wave to the source signal. Such a wave's frequency components are highly 
dependent. Though such a noise may have a high power, it is fairly easy to transmit a continuous signal with 
much less power than one would need if the underlying noise was a sum of independent noises in each 
frequency band.   

Approximations  
For large or small and constant signal-to-noise ratios, the capacity formula can be approximated:   

• If S/N >> 1, then  

  
  

where   
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• Similarly, if S/N << 1, then  

 

In this low-SNR approximation, capacity is independent of bandwidth if the noise is white, of spectral density 
N0 watts per hertz, in which case the total noise power is B.N0.  
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MODULE 3  

  

Linear Block Codes  
  

Introduction to Linear Block Codes  
  
This set of 2k code words is called a block code.   
  
For a block code to be useful, there should be a one-to-one correspondence between a message u and its code 
word v.   
  
A desirable structure for a block code to possess is the linearity. With this structure, the encoding complexity 
will be greatly reduced.  
  

  
  
Block code: k message bits encoded to n code bits i.e., each of 2k messages encoded into a unique                       
n-bit codeword via a linear transformation.   
  
Property: Sum of any two codewords is also a codeword necessary and sufficient for code to be linear.   
  
(n,k) code has rate k/n.   
  
Sometime written as (n,k,d), where d is the minimum Hamming Distance of the code.  
  

Generator Matrix of Linear Block Code   
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Linear transformation:   
  
C=D.G   
  
C is an n-element row vector containing the codeword   
D is a k-element row vector containing the message   
G is the kxn generator matrix   
  
Each codeword bit is a specified linear combination of message bits.   
  
Each codeword is a linear combination of rows of G.  
  
(n,k) Systematic Linear Block Codes   
  
• Split data into k-bit blocks   
• Add (n-k) parity bits to each block using (n-k) linear equations, making each block n bits long   
  

  
• Every linear code can be represented by an equivalent systematic form --- ordering is not significant, direct 

inclusion of k message bits in n-bit codeword is.   
  
Since an (n, k) linear code C is a k-dimensional subspace of the vector space Vn of all the binary ntuple, it is 
possible to find k linearly independent code word, g0 , g1 ,…, gk-1 in C  
  

  
  
where ui = 0 or 1 for 0 ≤ i < k  
  
Let us arrange these k linearly independent code words as the rows of a k × n matrix as follows:  
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If u = (u0,u1,…,uk-1) is the message to be encoded, the corresponding code word can be given as follows:  
  
v=u.G  
  

  
  
• Corresponds to using invertible transformations on rows and permutations on columns of G to get   
  
• G = [I | A] --- identity matrix in the first k columns  
  
A linear systematic (n, k) code is completely specified by a k × n matrix G of the following form  
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For any k × n matrix G with k linearly independent rows, there exists an (n-k) ×n matrix H with n-k linearly 
independent rows such that any vector in the row space of G is orthogonal to the rows of H and any vector 
that is orthogonal to the rows of H is in the row space of G.   
  
An n-tuple v is a code word in the code generated by G if and only if v • HT = 0   
  
This matrix H is called a parity-check matrix of the code   
  
The 2n-k linear combinations of the rows of matrix H form an (n, n – k) linear code Cd   
  
This code is the null space of the (n, k) linear code C generated by matrix G  
  
Cd is called the dual code of C  
  
If the generator matrix of an (n,k) linear code is in the systematic form of (3.4), the parity-check matrix may 
take the following form  
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Let hj be the jth row of H   
  

  
  
for 0 ≤ i < k and 0 ≤ j < n – k   
  
This implies that G • HT = 0  = + = 0  
  
Let u = (u0, u1, …, uk-1) be the message to be encoded   
  
In systematic form the corresponding code word would be   
  
v = (v0, v1, … , vn-k-1, u0,u1, … , uk-1)   
  
Using the fact that v • HT = 0, we obtain   

  
  

Syndrome and Error Detection  
  
Let v = (v0, v1, …, vn-1) be a code word that was transmitted over a noisy channel  
  
 Let r = (r0, r1, …, rn-1) be the received vector at the output of the channel  

  
  
e= r + v = (e0, e1, …, en-1) is an n-tuple   
  
ei = 1 for ri ≠ vi   
  

ei = 0 for ri = vi   
  
The n-tuple e is called the error vector (or error pattern)  
  
Upon receiving r, the decoder must first determine whether r contains transmission errors   
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If the presence of errors is detected, the decoder will take actions to locate the errors,  Correct errors (FEC) , 
Request for a retransmission of v (ARQ)   
  
When r is received, the decoder computes the following (n – k)-tuple :   
  
s = r • HT  
  

s = 0 if and only if r is a code word and receiver accepts r as the transmitted code word  s≠0 
if and only if r is not a code word and the presence of errors has been detected   
  
When the error pattern e is identical to a nonzero code word (i.e., r contain errors but s = r • HT = 0), error 
patterns of this kind are called undetectable error patterns   
  
Since there are 2k – 1 nonzero code words, there are 2k – 1 undetectable error patterns  
  
Since r is the vector sum of v and e, it follows from (3.10) that  s 
= r • HT = (v + e) • HT = v • HT + e • HT   
  
however, v • HT = 0   
  
consequently, we obtain the following relation between the syndrome and the error pattern :   
s = e • HT  
  

The Minimum Distance of a Block Code  
  
Let v and w be two n-tuple, the Hamming distance between v and w, denoted d(v,w), is defined as the number 
of places where they differ   
For example, the Hamming distance between v = (1 0 0 1 0 1 1) and w = (0 1 0 0 0 1 1) is 3  
  

Error Detection  
  
A linear block code can detect all error patterns of dmin − 1 or fewer errors.   
  
If e 6= 0 is a codeword, then no errors are detected   
  
There are 2k−1 undetectable error patterns, but there are 2n − 1 possible nonzero error patterns.    
  
The number of detectable error patterns is 2 n − 1 − (2k − 1) = 2n − 2 k   
  
Usually, 2k − 1 is a small fraction of 2n − 2 k .   
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Error Correction  
  
A linear block code can correct all error patterns of t or fewer errors, where t = ⌊ dmin − 1 ⌋ /2 and ⌊x⌋ is the 
largest integer ≤ x.  
  
 A code is usually capable of correcting many error patterns of t + 1 or more errors, but not all of them. In 
fact, up to 2n−k error patters may be corrected, equal to the number of syndromes.  
  

The Standard Array  
  
1. Write out all 2k codewords in a row starting with c0 = 0.   
  
2. From the remaining 2n − 2 k n-tuples, select an error pattern e2 of weight 1 and place it under c0. Under 

each codeword put ci + e2   
  
3. Select a minimum weight error patter e3 from the remaining unused n-tuples and place it under c0 = 0. 

Under each codeword put ci + e3.   
  
4. Repeat 3) until all n-tuples have been used.  
  
  
Perfect Codes   
  
The packing radius is the radius of the largest sphere that can be drawn around every codeword in n−space 
such that no two spheres intersect. ¤ The value of this radius is b(dmin − 1)/2c.   
  
 The covering radius of a code is the radius of the smallest sphere that can be drawn about every codeword 
such that every point in n−space is included.   
  
A perfect code is one whose packing and covering radii are equal.  
  
 A perfect code satisfies the Hamming bound with equality.   
A quasi-perfect code is one for which the covering radius equals the packing radius plus one.  
  
  

Hamming Codes   
  
• Hamming codes correct single errors with the minimum number of parity bits:  n = 2n-k – 1   

• (7,4,3)   
• (15,11,3)   
• (2m –1,2m -1-m,3)  
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MODULE 4  

  
  
  
  

Cyclic Codes  
  

Introduction   
  
Binary cyclic codes form a subclass of linear block codes. Easier to encode and decode   
  
Definition A (n, k) linear block code C is called a cyclic code if   
  
1. The sum of any two codewords in the code is also a codeword. (Linear)   
  
Example: Ci + Cj = Ck  
  
2. Any cyclic shift of a codeword in the code is also a codeword. (Cyclic)   
  
Example: If C = [C0   C1 ......  Cn-1]  is a codeword,  
                     C(1) = [Cn-1   C0 ......  Cn-3   Cn-2]                      
C(2) = [Cn-2   Cn-1 ......  Cn-4   Cn-3]                      .  
                     .  
                     C(n-1) = [C1   C2 ...... Cn-1   C0]                   
are also codewords.  
  
We can represent the code word C=[C0   C1 …   Cn-1] by a code polynomial   
  
C(X) = C0  + C1 X + ...... + Cn-1 Xn-1  
  
The coefficients Ci = {0,1} and each power of X in the polynomial C(X) represents a one-bit shift in time. 
Hence, multiplication of the polynomial C(X) by X may be viewed as a shift to the right.   
  
Example: C= [1101] can be represented by   
  
C(X) = 1 + X + X3  
  

C(i)(X) is recognized as the code polynomial of the code word [Cn-i   …   Cn-1   C0   C1   …   Cn-i-1] obtained 
by applying i cyclic shifts to the code word [C0   C1   … Cn-1].  
It can be shown that C(i)(X)  is the remainder resulting from dividing XiC(X) by Xn + 1. That is,   
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XiC(X) = q(X)(Xn + 1) + C(i)(X)  
  
where q(X) = Cn-1 + Cn-i+1 X + ..... + Cn-1Xi-1  
  

Generator Polynomial   
  
If g(X) is a polynomial of degree (n - k) and is a factor of Xn+1, then g(X) generates an (n, k) cyclic code in 
which the code polynomial C(X) for a data vector M = [ m0 m1 m2 . . . mk-1 ] is generated by C(X) = M(X) 
g(X)  
  
where C(X) = C0 + C1X + C2X2 + ...... + Cn-1 Xn-1              
M(X) = m0 + mX + m2X2 + ...... + mk-1 Xk-1 

                   

g(X) = g0 + g1 X + g2X2 + ...... + gn-k Xn-k  
g(X) is the generating polynomial  
  
Systematic cyclic code generation  
  
Let the message polynomial be defined by  
  
            M(X) = m0 + mX + m2X2 + ...... + mk-1 Xk-1  
  

and     B(X) = b0 + b1 X + b2X2 + ...... + bn-k-1 Xn-k-1  
  

We want the code polynomial to be in the form   
  
C(X) = B(X) + Xn-k M(X)   
  
Hence, A(X)g(X) = B(X) + Xn-k M(X)   
  
Equivalently, we may write  
  
X n−kM(X) B(X) 

=A(X)+  g(X)
 g(X) 

  
This equation states that the polynomial B(X) is the remainder left over after dividing X n−kM(X) by g(x).  

  

Parity-check polynomial  
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An (n,k) cyclic code is uniquely specified by its generator polynomial g(X) of order (n-k). Such a code is 
also uniquely specified by another polynomial of degree k, which is called the parity-check polynomial, 
defined by  
  
h(X) = 1 + h1 X + h2 X2 + ....... + hk-1 Xk-1 + Xk  
  
In linear block code, we have GHT = 0. Now, we have g(X)h(X) mod(Xn + 1) = 0 and we state that  
  
g(X)h(X) = (Xn + 1)  
  

Syndrome  
  
Let the received word be [r0   r1   .....   rn-1] and  
  
R(X) = r0  + r1X   .....   rn-1Xn-1  
  

Now,  R(X) = q(X)g(X) + S(X)  
  
where S(X) is called syndrome polynomial because its coefficients make up the syndrome S.  
  
  

Systematic Encoding of Cyclic Codes   
  
To encode a k-bit message [ u0  u1 · · · uk−1 ] construct the message polynomial   
  
u(X) = u0 + u1X + · · · + uk−1X k−1   
  
Given a generator polynomial g(X) of an (n, k) cyclic code, the corresponding codeword is u(X)g(X).   
  
This is not a systematic encoding.   
  
A systematic encoding of the message can be obtained as follows   
  
Divide X n−ku(X) by g(X) to obtain remainder b(X)  
  
The code polynomial is given by b(X) + X n−ku(X)  
  
  

Systematic Encoding Circuit for Cyclic Codes   
  
Let g(X) = 1 + g1X + g2X 2 + · · · + gn−k−1X n−k−1 + X n−k  
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Turn on the gate. Shift the message bits uk−1, uk−2, . . . , u0 into the circuit and channel simultaneously. Only 
Output1 is fed to the channel.   
  
Turn off the gate and shift the contents of the shift register into the channel. Only Output2 is fed to the 
channel.  
  

Syndrome Computation   
  
Errors are detected when the received vector is not a codeword   
  
For linear block codes, r is a codeword ⇐⇒ rHT = 0   
  
s = rHT is called the syndrome vector   
  
For cyclic codes, the received polynomial r(X) is a code polynomial ⇐⇒ r(X) mod g(X) = 0   
  
s(X) = r(X) mod g(X) is called the syndrome polynomial   
  
The following circuit computes the syndrome polynomial  
  

  
  
  

Golay Codes  
  
The condition for a code to be perfect is that its n, M and d values satisfy the sphere - packing bound   
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M


=t kn k qn 

(q−1) = 

k 0 

  
with d = 2t + 1. Golay found three other possible integer triples (n, M, d) that do not correspond to the 
parameters of a Hamming or trivial perfect code. They are (23, 2 12 , 7) and (90, 2 78 , 5) for q = 2 and (11, 3 
6 , 5) for q = 3.  
  

  

  

  

  
  

MODULE 5 BCH 
CODES:  
  
  
SET:   
  
The sample statement that a set is a collection of elements.  A set with in objects is written as  {a1, a2, a3, 
a4, ….., an} the objects a1, a2, a3  are called as the set elements.  If the number of elements are finite then 
they are called as finite set.  Eg. A={1,2,3,5}  
If the number of elements are infinite then they are called as infinite set  

Eg. A={±1, ±2, ±3, ±5}  
  
  

GROUP  
  
A group is constructed from a set by defining a group operation * between the elements such that the 
following conditions are satisfied  

• The group is closed under the operation * that for any two elements a 
and b within the set then  the element  c= a*b  is also an element of the 
set.   

• The operation * is associative, so that given the elements   a*(b*c) = 
(a*b)*c  
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• An identity element is present in the set.  a * I = I * a = a  

• For every element there exists a  unique inverse a’ n the set such that  
a*a’ = a’*a = I   

  
 if the group has the property that the two elements of it   
  
        a*b = b*a   
then the commutative group or multiplicative group   
  
  
   
Additive Group:  
  
Construct an additive group of integers modulo -5 over the set {0,1,2,3,4} We 
need to get the remainders when we obtain the integers pair wise.   
+  0  1  2  3  4  
0  0  1  2  3  4  
1  1  2  3  4  0  
2  2  3  4  0  1  
3  3  4  0  1  2  
4  4  0  1  2  3  

  
  

Multiplicative Group:  
  
Multiplicative group can be constructed using the modulo m multiplication, it is the remainder of the product 
of the two integers.   
  
X  1  2  3  4  
1  1  2  3  4  
2  2  4  1  3  
3  3  1  4  2  
4  4  3  2  1  
  
  
  

Field   
  A group is extended to a field. A field is an algebraic system consisting of a set, an identity   
element for each operation, two operations and their respective inverse   operations.  
A example field, F = ( A, O1, O2, I1, I2 )  
     A is set of   
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     O1 is the operation of addition, the inverse operation is subtraction  
     O2 is the operation of multiplication  
     I1 is the identity element zero (0)  
     I2 is the identity element one (1)  
  
Design a modulo 7 prime field with multiplication and addition as field operators  
+  0  1  2  3  4  5  6  X  1  2  3  4  5  6    
0  0  1  2  3  4  5  6  1  1  2  3  4  5  6    
1  1  2  3  4  5  6  0  2  2  4  6  1  3  5    
2  2  3  4  5  6  0  1  3  3  6  2  5  1  4    
3  3  4  5  6  0  1  2  4  4  1  5  2  6  3    
4  4  5  6  0  1  2  3  5  5  3  1  6  4  2    
5  5  6  0  1  2  3  4  6  6  5  4  3  2  1    
6  6  0  1  2  3  4  5                  
  
  
  

Galois Field   
    

  GF(p) for any prime, p, this Galois Field has p elements which are the residue classes of integers modulo 
p  m  
  GF(p ) for any prime, p, and m greater than zero, this Galois Field  m has p  elements which is a Field of 
polynomials over GF(p) modulo an irreducible polynomial of degree m.  
  GF(q) for q = p  for  prime, p, and m greater than zero,  this Galois Field has q elements of the vector space 
of dimension m  over GF(p).  
  
    
If p is a prime number, then it is also possible to define a field with pm elements for any m . These fields are 
named for the great French algebraist Evari ste Galois . They have many applications in coding theory.  The 
fields, denoted GF(pm), are comprised of the polynomials of degree m − 1 over the field p  
. These polynomials are expressed as am − 1 xm−1 + ... + a1 x1+a0x0 where the coefficients  a I take on 
values in  the set {0, 1, ..., p−1}.  
When employed in coding applications p is commonly 2 and thus the coefficients {a0 , ..., am−1} are taken 
from the binary digits {0,1} . In coding applications, for m ≤ 32, it is common to represent an entire 
polynomial in GF(2m) as a single integer value in which individual bits of the integer repressent the 
coefficients of the polynomial. The least significant bit of the integer represents the a0 coefficient.  
  
  

Galois Field(2)     GF(2)  

The two elements are nearly always called 0 and 1, being the additive and multiplicative identities, 
respectively.    
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The field's addition operation is given by the table below, which corresponds to the logical XOR operation.   

  

+ 0 1 

0 0 1 

1 1 0 

The field's multiplication operation corresponds to the logical AND operation.   

× 0 1 

0 0 0 

1 0 1 

  
  
GF(2m)  
  

The elements of GF(2m) are binary polynomials, i.e. polynomials whose coefficients are either 0 or 1. 
There are 2m such polynomials in the field and the degree of each polynomial is no more than m-1. Therefore 
the elements can be represented as m-bit strings. Each bit in the bit string corresponding to the coefficient in 
the polynomial at the same position. For example, GF(23) contains 8 element {0, 1, ɑ, ɑ+1, ɑ2, ɑ2+1, ɑ2+ɑ, 
ɑ2+ɑ+1}. ɑ+1 is actually 0ɑ2+1ɑ+1, so it can be represented as a bit string 011. Similarly, ɑ2+ɑ = 1ɑ2+1ɑ+0, 
so it can be represented as 110.  

  
Field elements of GF (23)  
0 1 ɑ ɑ2 ɑ3    

= ɑ+1 ɑ4   = 
ɑ2+ ɑ ɑ5   = 
ɑ2+ɑ+1  

ɑ6  = ɑ2+1  
  
  
Addition and multiplication field of Galois field,    
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Irreducible and primitive polynomials  

A polynomial is said to be irreducible if it cannot be factored into nontrivial polynomials over the same field.  
Eg. In the finite field GF(2): is irreducible is not irreducible, since 

(mod 2).  
  

The number of irreducible polynomials of degree over GF(2) is  
  

 
 
irreducible polynomials  

1    

2     
3     

4     

5   ,  

  
  
  
  
A primitive polynomial is a polynomial that generates all elements of an extension field from a base 

field. Primitive polynomials are also irreducible polynomials. For any prime or prime power  and any 
positive integer , there exists a primitive polynomial of degree over GF( ). A primitive polynomial is a 
special case of irreducible polynomial.   

,    

,  

,  ,  

,  ,  ,  ,  
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To determine whether a polynomial is primitive or not :  
Let p(x)  = x4 + x3+ x2 + x + 1  
Determine  2m-1= 15  
  
If p(x)  divides  x15 +1  then it is irreducible. But to state that it is primitive we need to determine 

whether it divides into x14 +1, x13+1 ….or x5+1.   if it divides into any of these polynomial then it is not a 
primitive polynomial.   

Here in this example p(x) is not a primitive polynomial.   
  
  
Example: Determine  that the following polynomial are primitive or not.   

a) x2 + x + 1  
b) x3 + x + 1  

  
  

Computations with Polynomials   
Mathematcal computations over  polynomials whose coefficients are from the binary field GF(2). Let us 
consider a  polynomial f(X) with variable X and with coefficients from GF(2) is of the following form:   

   
  

  
The degree of a polynomial is the largest power of X with a nonzero coefficient. For the polynomial 

above, if f n  = l ,f(X) is a polynomial of degree n; if f n = 0, ,f(X) is a polynomial of degree less than n. The 
degree of  f(X) = f0 is zero.  

Addition :   
Let us consider two polynomials  x+1  and 
x2+1. Addition of these will be :  
  

x+1   
x2+1 x2+ 
x  

  
Division   
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BCH codes   
The Bose, Chaudhuri, and Hocquenghem (BCH) codes form a large class of powerful random 
errorcorrecting cyclic codes. This class of codes is a remarkable generalization of the Hamming code for 
multiple-error correction.  
  
BCH codes are a class of linear cyclic codes with an arbitrary set of linear block codes as its roots.  For a 
cyclic code any codeword polynomial has its generator polynomial as a factor; so the roots of the code’s 
generator  polynomial g(x) are also the roots of codewords. BCH codes are constructed using the roots of  
g(x) in extended Galois field; binary primitive BCH codes – which are multiple random error correcting in 
nature – form an important sub class. A t error correcting binary BCH code can be generated by the 
following parameters   
  
Block length  n= 2m - 1   
No. of parity check bits: n– K≤mt Minimum 
distance: dmin≥2t + 1   
  
Procedure :  
  
A t error correcting cyclic code wth generator polynomial g(x) is a binary BCH  code if and only if g(x) is 
the least degree polynomial over GF(2) that has  roots  β, β2 , β3 ,….., β2t where β is the element of g(x).   
  
g(x)= LCM [m1(x), m2(x), m3(x), ..... , m2t(x)] where m1(x), m2(x), 
… are the minimal polynomial of the ɑ, ɑ2, ɑ3.   
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 Decoding of BCH codes The decoding of BCH codes involves the following steps:   

(i) Form the syndrome polynomial   
(ii) s(x) = s0+ s1x + s2x2+ ·· ·+sn-K-1x n-K-1 with the set { s0,s1,s2.... s-K-1} being the values of 

r(x)  at α, α2,.... α2t.   
(iii) If s(x) is zero, r(x) itself is a codeword; else proceed as follows. (ii)With the syndromes obtained 

in step 1 above, form the error-locator polynomial σ(x) using any of algorithms like  Peterson 
Gorenstein Zierler algorithm   

(iv) obtain the roots of σ(x) and their respective inverses which indicate he rror locations.   
(v) Complement the bits in the positions indicated by the error locations to obtain the decoded 

codeword. It may be noted here that alternately the syndrome polynomial can be obtained by 
dividing r(x) by g(x) and evaluating the remainder at α, α2,.... α2t. This is same as the syndrome.   

  
  
Sample Questions  
  
  

1. What are primitive polynomials? Verify whether p(x) = x4+x+1 is a primitive polynomial   

2. Verify whether the codes are cyclic or not {0000, 0110, 1100, 0011, 1001}  

3. Determine the conjugates of  3 in GF(23) and GF(24).  

4. The generator polynomial of a cyclic code is a factor of   

 a) Xn+1  b) X (n+1)+1  c) X (n+2)+1     d) none of these  

5. Explain BCH codes and its syndrome detection technique. Design a triple error correcting BCH 
code over GF(24).   
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MODULE 6  
  
  

Convolutional codes  
A Convolutional code is a type of error-correcting code that generates parity symbols via the sliding 
application of a boolean polynomial function to a data stream. The sliding application represents the 
'convolution' of the encoder over the data, which gives rise to the term 'convolutional coding.' The sliding 
nature of the convolutional codes facilitates trellis decoding using a time-invariant trellis. Time invariant 
trellis decoding allows convolutional codes to be maximum-likelihood soft-decision decoded with reasonable 
complexity.  

The ability to perform economical maximum likelihood soft decision decoding is one of the major benefits 
of convolutional codes. This is in contrast to classic block codes, which are generally represented by a 
timevariant trellis and therefore are typically hard-decision decoded.   

Convolutional codes are often characterized by the base code rate and the depth (or memory) of the encoder 
[n,k,K].  

Convolutional codes are commonly specified by three parameters; (n,k,m).   

n = number of output bits  k = number of 

input bits  m = number of memory registers  

The base code rate is typically given as n/k, where n is the input data rate and k is the output symbol rate.   

The depth is often called the "constraint length" 'K', where the output is a function of the current input as well 
as the previous K-1 inputs.   

The depth may also be given as the number of memory elements 'v' in the polynomial or the maximum 
possible number of states of the encoder (typically 2^v). Constraint Length, K = k (m-1)    

Convolutional codes are often described as continuous. However, it may also be said that convolutional codes 
have arbitrary block length, rather than being continuous, since most real-world convolutional encoding is 
performed on blocks of data. Convolutional encoded block codes typically employ termination. The arbitrary 
block length of convolutional codes can also be contrasted to classic block codes, which generally have fixed 
block lengths that are determined by algebraic properties.  

The code rate of a convolutional code is commonly modified via symbol puncturing. For example, a 
convolutional code with a 'mother' code rate n/k=1/2 may be punctured to a higher rate of, for example, 7/8 
simply by not transmitting a portion of code symbols. The performance of a punctured convolutional code 
generally scales well with the amount of parity transmitted. The ability to perform economical soft decision 
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decoding on convolutional codes, as well as the block length and code rate flexibility of convolutional codes, 
makes them very popular for digital communications  

  
  
  
  
  
  
  
  
  
  
GENERATION OF CONVOLUTION CODE:  
  
  
  

A convolutional code is generated by passing the information sequence to be transmitted  through a linear 
finite-state shift register. In general, the shift register consists of K(k-bit) stages and n linear algebraic 
function generators  
Let us consider a binary convolutional encoder with constraint  length K=3, k=1, and n =2. The generators 
are: g1 =[1011], g2 =[1101].   

  

  
 Let us consider the binary sequence be 101  10  

One bit enters the circuit at a time and the encoded output are considered as v1, v2  
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There are three alternative methods that are often used to describe a convolutional code:  

Tree diagram  
Trellis diagram  
State disgram  

  
  

State Diagram:   
  
The encoder can be viewed as a finite state machine, for which we can draw a state diagram with transition 
labels   
For the above circuit diagram the state diagram is as below   

  
  
Where S0, S1, S2, S3, S4, S5, S6, S7 are the possible state of the shift registers.   
  
  
TRELLIS DIAGRAM   
The tree diagram for the convolto encoder below   
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Tree Diagram  
Note that the tree diagram in the right repeats itself after the third stage. This is consistent with the 

fact that the constraint length K=3. The output sequence at each stage is determined by the input bit and the 
two previous input bits. In other words, we may sat that the 3-bit output sequence for each input bit is 
determined by the input bit and the four possible states of the shift register, denoted as a=00, b=01, c=10, and 
d=11.  
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Tree diagram for rate 1/3, K=3 convolutional code.  
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State Diagram   
  
  

  
Encoding of Convolutional Codes  
Example: A (2, 1, 3) binary convolutional codes:   

 the encoder consists of 
an m= 3-stage shift register together with n=2 modulo-2 adders and a multiplexer for serializing the encoder 
outputs. The mod-2 adders can be implemented as EXCLUSIVE-OR gates. Since mod-2 addition is a linear  
operation, the encoder is a linear feedforward shift register.  

The information sequence u =(u , u , u , …) enters the encoder one bit at a time. 0 1 2 Since the 
encoder is a linear system, the two encoder output = be obtained as the convolution of the input sequence u 
with the two encoder “impulse response.he impulse responses are obtained by letting u =(1 0 0 …) and 
observing the two output sequence. Since the encoder has an m-time unit memory, the impulse responses can 
last at most m+1 time units, and are written as :  

g(1) =   ( g01 , g11 , g21 , g31 , g41 ) g(2) 

=   ( g02 , g12 , g22 , g32 , g42 )  
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The encoder of the binary (2, 1, 3) code is   
  
The impulse response g sequences of the code  g(1)  
=  (1011)  
g(2)     =   (1111) are called the generator sequence of the code.   The encoding equations can now be 

written as v(1) = u∗ g (1)  v(2) = u∗g(2) where * denotes discrete convolution and all operations are mod-2.   
  
The code word v = (υ0(1), υ0(2), υ1(1), υ1(2), υ2(1), υ2(2) …..)  

  
  
  

Generator Matrix  
If the generator sequence g(1) and g(2) arranged in the matrix and g are interlaced and then where the 

blank areas are all zeros, the encoding equations can be rewritten in matrix form as v = uG.  

 G is called 
the generator matrix of the code.  Note that each row of G is identical to the preceding row but shifted n = 2 
places to right,  

  
If u has finite length L, then G has L rows and 2(m+L) columns, and v has length 2(m + L).  
  
  
  
Example:   
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Decoding  There are several different approaches to decoding of 

convolutional codes.   
These are grouped in two basic categories.    
1.Sequential Decoding  - Fano algorithm  
2. Maximum likely-hood decoding - Viterbi decoding   
  
 Both of these methods represent 2 different approaches to the same basic idea behind decoding.  The 

basic idea behind decoding  Assume that 3 bits were sent via a rate ½ code. We receive 6 bits. (Ignore flush 
bits for now.) These six bits may or may not have errors. We know from the encoding process that these bits 
map uniquely. So a 3 bit sequence will have a unique 6 bit output. But due to errors, we can receive any and 
all possible combinations of the 6 bits.  The permutation of 3 input bits results in eight possible input 
sequences. Each of these has a unique mapping to a six bit output sequence by the code. These form the set 
of permissible sequences and the decoder’s task is to determine which one was sent.  

  
Viterbi decoding is the best known implementation of the maximum likely-hood decoding. Here we 

narrow the options systematically at each time tick. The principal used to reduce the choices is this. The errors 
occur infrequently. The probability of error is small. The probability of two errors in a row is much smaller 
than a single error, that is the errors are distributed randomly.   

 The Viterbi decoder examines an entire received sequence of a given length. The decoder computes 
a metric for each path and makes a decision based on this metric. All paths are followed until two paths 
converge on one node. Then the path with the higher metric is kept and the one with lower metric is discarded. 
The paths selected are called the survivors.   For an N bit sequence, total numbers of possible received 
sequences are 2 . Of these only 2 valid. The Viterbi algorithm applies the maximum-likelihood principles to 
limit the comparison to 2 of the power of kL surviving paths instead of checking all paths.    
The most common metric used is the Hamming distance metric. This is just the dot product between the 
received codeword and the allowable codeword.   



  

INFORMATION THEORY & CODING. EC602  

  
  
For an encoder given, the decoding process of received sequence using Viterbi decoding.  
  
  

   
Let’s decode the received sequence 01 11 01 11 01 01 11 using Viterbi decoding.  
  

  
2. At t = 1, the decoder fans out from these two possible states to four states. The branch metrics for these 
branches are computed by looking at the agreement with the codeword and the incoming bits, which are 11. 
The new metric is shown on the right of the trellis.  
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At t = 2, the four states have fanned out to eight to show all possible paths. The path metrics  

calculated for bits 01 and added to pervious metrics from t = 1.  
  

  
  

Step 3  
  
  

At t = 4, the trellis is fully populated. Each node has at least one path coming into it. The metrics are as shown 
in the figure above.   At t = 5, the paths progress forward and now begin to converge on the nodes. Two 
metrics are given for each of the paths coming into a node. Per the Maximum likelihood principle, at each 
node we discard the path with the lower metric because it is least likely. This discarding of paths at each node 
helps to reduce the number of paths that have to be examined and gives the Viterbi method its strength.  
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Now at each node, we have one or more path converging. The metrics for all paths are given on the right.  
At each node, we keep only the path with the highest metric and discard all others, marked with an X 
(shown in red). After discarding the paths with the smaller metric, we have the following paths left. The 
metric shown is that of the winner path.  

  
Fg: Step 4 after discarding   
  

  
Fig. Complete viterbi diagram   
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The trellis is complete. We now look at the path with the highest metric. The path traced by states 000, 100, 
010, 101, 110, 011, 001, 000 and corresponding to bits 1011000 is the decoded sequence.  
  
  

  

Sample Questions   

1. Define constraint length in convolutional codes.  

2. Verify whether the codes are cyclic or not {0000, 0110, 1100, 0011, 1001}  

3. For a (3,1,2) convolution code with g(1) =  (1 0 1 ) and  g(2) =  (1 1 1)  g(3) =  (1 0 0)          
a) Determine the code word for message u = (1001)  

b) Give the hardware realization of the encoder.  

c) Give the state diagram for the encoder  

d) Using viterbi decoding  technique decode the received code word r = 101010010000  
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