
  
  
Stream: ECE  

Paper Name: Advanced Microcontroller and Embedded system  
Paper Code: EC 604B             Contacts: 3L          Credits: 3        Total Contact: 36 

Semester: 6th   

Prepared by: Mr.Sayan Roy Chaudhuri. 
  
Pre requisite:   
(1) Concepts in 8085 ,8086 Microprocessor  
(2) concept of MCS51 series of Microcontroller.  
  
Course  Objectives:  
  

• To familiarize the students with concepts related to the fundamental principles embedded   systems  
design, explain the process and apply it .                                                                                                 

• To understand knowledge of the advanced microcontroller technology both for hardware and 
software.  

• Student will  able to understand Hardware/Software design   techniques for microcontroller-based 
embedded systems and  apply techniques in design problems.  

• Student will able to develop microcontrollers programming in C and assembly language  using 
Integrated Development Environments and using debugging technique.  

  
  
  
Module I   INTRODUCTION TO PIC MICROCONTROLLER  : PIC 18F4550 Microcontroller –  
Hardware Architecture & GPIOs ((Pin Diagram, Memory Organization, SFRs description, Program Counter, 

Accumulator (or Working Register), Reset, Clock Cycle, Machine Cycle, Instruction Cycle, Interrupts, SFRs 

& GPRs, Stack, Stack Pointer, Stack Operation, Timers and serial communication in PIC 16F877A). 

Microcontroller PIC Assembly Language, Programming in Embedded C, Introduction to programming 

software, Examples programs for PIC.  

  

Module II:   INTERFACING PIC 16F877A WITH INPUT OUTPUT DEVICES : LED Display,7- 
Segment, DIP Switch, Intelligent LCD Display, Matrix Keyboard, Stepper Motors and Types of Stepper 

Motors, Serial Communication Concepts, Practices on interfacing circuits, serial and parallel communication 

devices, wireless communication devices, timer and counting devices, watchdog timer, real time clock, serial 

bus communication protocols, USB, Bluetooth, Practices of ICP, ADC, EEPROM, Opto-Isolators, Relay, I2C, 

SPI Protocol, Serial Memory, On chip Peripherals PWM.  

  

Module III:  ARM ARCHITECTURE AND PROGRAMMING: Introduction of ARM Processors, 

Evolution of ARM, 32 - bit Programming.ARM7 Architecture, Instruction Set Architecture, LPC21xx 

Description, Memories & Peripherals. ARM Processor Programming in C, Using ARM Programming 

Tools.  
  



  
Module IV: INTRODUCTION TO EMBEDDED SYSTEM: Basics of Embedded computer Systems, 

Microprocessor and Microcontroller difference, Hardware architecture and software components of embedded 

system List of various applications [Mobile phones, RFID, WISENET, Robotics, Biomedical Applications, 

Brain machine interface etc.], Difference between embedded computer systems and generalpurpose computer 

Systems. Characteristics of embedded systems, Classifications of embedded system.  

  
Module  V:  HARDWARE  SOFTWARE  CO-  DESIGN:  Co-Design  Types:  

Microprocessors/Microcontrollers/DSP based Design, FPGA / ASIC /pSOC based Design, Hybrid Design. 

Methodology: i) System specifications ii)) co-specifications of hardware and software) iii)) System Design 

Languages (capturing the specification in a single Description) iv) System modeling /simulation v) Partitioning 

(optimizing hardware/software partition) vi) Co-verification (simulation interaction between custom hardware 

and processor) f) Co-implementation vii) Embedded Systems Design development cycle.  

Programming concepts and embedded programming in C.  

  
MODULE VI: - REAL TIME OPERATING SYSTEM (RTOS): - Introduction, Types, Process 

Management, Memory Management, Interrupt in RTOS, Task scheduling, Basic design using RTOS; Basic 

idea of Hardware and Software testing in Embedded Systems  

 
  
  
Text Books:  
  

1. Steve Furber, ‘ARM system on chip architecture’, Addision Wesley  
  
2. Microchip's PIC microcontroller is rapidly becoming the microcontroller of choice throughout the world,  

Myke Predco  

   
3. Embedded system Design: Peter Marwedel, Springer  
  
4. Embedded Systems  - Raj Kamal  
  
5. PIC Microcontroller – Mazidi and Mazidi   
  
Reference books:  

  
  

1.  Andrew N. Sloss, Dominic Symes, Chris Wright, John Rayfield ‘ARM System 
Developer’s  Guide  Designing  and  Optimizing  System  Software’,  Elsevier 
2007.  

3.  ARM Architecture Reference Manual  
  

  



  

  

Course outcome  

EC604B.1. Analyze the performance of PIC microcontroller.  

EC604B.2. Design and develop the systems based on ARM controllers. 

EC604B.3. an ability to use the techniques, skills, and modern engineering 

tools in embedded system.  

Program outcome   

1.Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an 
engineering specialization to the solution of complex engineering problems.  

2.Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering 
problems reaching substantiated conclusions using first principles of mathematics,natural sciences and 
Engineering sciences.  

3.Design/Development of solutions: Design solutions for complex engineering problems and design system 
components or processes that meet the specified needs with appropriate consideration for the public health and 
safety, and the cultural, societal, and environmental considerations.  

4.Conduct investigations of complex problems: Use research-based knowledge and research methods 
including design of experiments, analysis and interpretation of data, and synthesis of the information to provide 
valid conclusions.   

5.Modern tool usage :Create, select, and apply appropriate techniques, resources, and modern engineering 
and IT tools including prediction and modelling to complex engineering activities with an understanding of 
the limitations.   

6.The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, 
safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering 
practice.   

7.Environment and sustainability: Understand the impact of the professional engineering solutions in 
societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.   

8.Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the 
engineering practice.   

9.Individual and team work: Function effectively as an individual and as a member or leader in diverse 
teams, and in multidisciplinary settings.   

10.Communication: Communicate effectively on complex engineering activities with the engineering 
community and with society at large, such as, being able to comprehend and write effective reports and design 
documentation, make effective presentations, and give and receive clear instructions.  

11. Project management and finance: Demonstrate knowledge and understanding of the engineering 
management principles and apply these to one's own work, as a member and leader in a team, to manage 
projects and in multidisciplinary environments.   



12. Life-long learning: Recognize the need for and have the preparation and ability to engage in 
independent and lifelong learning in the broadest context of technological change.  

  
  
  
  
  
  
Mapping of POs with COs:  
  

  PO1   PO2   PO3   PO4   PO5   PO6   PO7   PO8   PO9   P10   P11   P12   

EC604B.1  3  3  2  -  1  -   -   -   1  1  -   1  

EC604B.2  3  2  2  -  -   -   -   1   2  1  -   1  

EC604B.3  3  2  1  2  1  1  -   -   2  1  -   -  

EC603avg  3  2  2  1  1  1  0  1  2  1  0  1  

  
  
  
  
   
  
  
  
  
  
   
  
  
  
  
  
   
  
  
  

OCW  
  
  

PIC Microcontroller  
  
  
  

PIC Microcontrollers------Introduction  
  



PIC stands for Peripheral Interface Controller coined by Microchip Technology to identify 

its single- chip microcontrollers. These devices have been phenomenally successful in 8-

bit microcontroller mar- ket. The main reason is that Microchip  Technology has 

constantly upgraded the device architecture and added needed peripherals to the 

microcontroller to ’suit customers’ requirements. The develop- ment tools such as 

assembler and simulator are freely available on the internet at www.microchip.com  

  
  

Low-end Architectures  
  

Microchip PIC microcontrollers  are available  in various types. When PI C − M icro    MCU 

first became available from General Instruments in early 1980’s, the microcontroller  

consisted of a very simple processor executing 12-bit wide instructions with basic I/O 

functions. These devices are known as low-end architectures.  

Some of the low-end device past numbers are 12C5XX, 16C5X, and16C505  
  

  

Mid-range  

Architectures  
  

Mid-range Architectures  are built by upgrading low-end architecture with more number 

of peripherals, more numbers of register and more data memory. Some of the mid-range 

devices are  

16C6X  

16C7X, 16F87X  

↑Program memory type  

C = EPROM  

F= Flash  

RC = Mask ROM  

Popularity of PIC microcontrollers is due to the 

following factors- 1. Speed: Harvard  Architecture,  

RISC Architecture 1 instruction Cycle = 4 clock 

cycles.  

For 20 MHz clock, most of the instructions are executed in 0.2µs or five instructions 
per mi-  

crosecond.  

2. Instruction  Set Simplicity:  



The instruction set consists of just 35 instructions (as opposed to 111 instructions  
for 8051)  

  

3. Power on reset  

Power-out reset  

Watch-dog timer  

Oscillator Options  

• low-power Crystal  

• Mid-range Crystal  

• High-range Crystal  

• RC Oscillator  

4. Programmable timer options on chip AD  



5. Up to 12 independent interrupt  sources  

6. Powerful output pin control  

25mA (max.) current sourcing capability.  

7. EPROM/OTP/ROM/Flash memory options.  

8. Free assembler and simulator support from microchip at http://www.microchip.com  
  
  

CPU Architecture and Instruction Set  
  

  
  
    

 Pipelining of instruction fetch successive addressing  

( n +2) th instruction  
  

.  

  
Program  
address   

Register  
address   

  
  
  
  

Program   
Memory   

  
13   8 

  
  
  

CPU   

  
Special  
purpose  
register   
  
  

+   
  

Instruction   
  

14   

Data   
  

8   

data  
memory   
(   ie   RAM)   



 Introduction of extra cycle for  a jump/goto instruction  

 
.  
.  



Register File Structure and Addressing Modes  
 Register file → locations that an instruction can access via an address. Register file 

consists of two components.  

1. General  purpose register file (same as RAM)  
  

2. Special purpose register file   
     

7F  
 FF  
     

  
 C0  BF  
  

20     

1F A0  
9F  

00 80  
 Bank 0  Bank 1  

  128 bytes  128 bytes  

RPO bit in the Status register detects the bank. 7 bit of direct address TRPO determines the absolute address 
of the register.  
Indirect addressing mode  
FSR contains the 8-bit address of the data/register.  

  
  
  

CPU Registers  
 W, the working register, is used by many instructions as the source of an operand. It may also serve as the 

destination for the result of the instructions execution. It works as the accumulator.  
 7  0  
  

W working register     
 7  6  5  4  3  2  1  0  
  
STATUS    

(address 03H,83H)  
C = Carry bit  
DC = Digit Carry  (same as AC, Auxiliary Carry)  
Z = Zero bit  
NOT-TO, NOT-PD→ Used in conjunction with PIC’s sleep mode  
RPO → register bank select bit used in conjunction with the direct addressing mode.  

 7  0  
  

FSR   

RAM  
(96 bytes)  

   

Special purpose  
Register  
(32 bytes)  

Extra 64 
bytes of 
RAM in  
PIC 16 C63  

16   C65A  
16   C73A  
16   C74A  

RAM  
(32 bytes)  

Special purpose 
Register  
(32 bytes)  

  

0  

  
0  

  
RP0  

  
NOT_TO 

  
NOT_PD 

  
Z  

  
DC  

  
C  



(address 04H,84H)  
Indirect data memory address points.  
FSR is the pointer used for indirect addressing.  
The program is supported by an eight-level stack.  When an interrupt  occurs, the program counter is 
automatically  pushed on to the stack. Since PIC microcontrollers programs are normally designed for 
handling one interrupt at a time, further  

  
  

Basic Architecture of PIC Microcontroller  
  

 
W → Temporary holding register, often called as an accumulator,  cannot be accessed directly.  Instead, 
contents must be moved to other registers that can be accessed directly.  
Bank Addressing  

  
  Bank 0  Bank 1  

  
  

Program   
Memory   

Program  counter   
13   8   

  
  

14   
  

Instruction  Register   Address  bus   

  
  
  
  

Instruction  
Decoder  &  
Control   

    
  
File   
Registers   

  
  
  
  
  
  
  
  
  
Data  
bus   

  
  
  
  
  
  
  

ALU   
  
  
  

W   
  
  
  
  



00 80  

01 81  

02 82  

03 83  

04 84  
05 85  
06 86  
07 87  

08 88 

09 

89  
0A 8A  
0B 8B  

0C  
  

1F 9F  
    
  

07F 0FF  
   

TRIS bit set → Post bit in I mode Reset → 
Post bit in 0 mode.  

       
EX: To set PORT B bit 0 as an output and loaded with a 1, PIC micro MCU code would exe- cute as:  
Port B. Bit = 1  
STATUS. RPO = 1  
TRIS B. Bit 0 = 0  
STATUS. RPO = 0  

  

INDF  INDF  
TMRO  OPTION  
PCL  PCL  

STATUS  STATUS  

FSR  FSR  
PORTA  TRISA  
PORTB  TRISB  
PORTC  TRISC  
PORTD  TRISD  
PORTE  TRISE  

PCLATH  PCLATH  
INTCON  INTCON  

  . .  
.           

 
  

    

  
  



  
  

PIC 16C74A  
Program Memory 
(EPROM)×14  

4k  

Data Memory 
(Bytes)×8  

192  

I/O Pins  33  
Parallel slave port   Yes  
A/D channel Serial 
Comm  

8  
SPI/I2 C,  

USART  
Interrupt  sources  12  

Memory Organization  

 The PIC 16C7X family has a 13-bit program counter capable of addressing 8k×14 program memory. 
PIC16C74A  has 4k×14 program memory.  For those devices with less than 8k program memory, accessing 
a location above the physically implemented address will cause a wraparound.  

  
  
Program memory map and stack  

16C74A has 4k program memory. The address range is 0000H  - 0FFFH. The reset vector is 0000H and the 
interrupt vector is 0004H.  

 
  
  

PC <12  :   0   >   
    
  

Stack level 1   
.   
.   
.   

Stack level 8   
  
  

Reset Vector   
.   
.   
.   

Int   .   Vector   
  
  

Page  (0)   

Page  (1)   

H 0000   
  
  
  
0004 H   

H 0005   
  
  

FFH 07   
H 0800   

  
0 FFFH   



 
PIC 16C74A has five ports. Each port is a bidirectional I/O port. In addition, they have the following  

alternative functions.  
  
  

Port  

  
  

Alternative uses of I/O pins  

  

I/O pins  
64A  
65A  
74A  

62A  
63A  
73A  

  

PORTA  

  

 A/D Converter inputs (  PIC 16C7X parts) 

  
6  

  
6  

PORTB    

External interrupt inouts  

 8    

8  
  

PORTC  
  

Serial port, Timer I/O  

  

8  

  
8  

  
PORTD  

  
Parallel slave port  

  
8  

  
0  

  
PORTE  

  
 A/D Convertor inputs (  PIC 16C 7X )  

  
3  

  
0  

    Total I/O pins   33   22  

Total pins  40/44  28  

 Port D alternative function is parallel slave port which enables one PIC microcontroller  to be connected to 
the data bus of another microprocessor. Since three LED’s are connected to three pins of Port D to be used 
as normal I/O operation, the special alternative function is ruled out.  

  



 
 TRIS register controls the direction of data flow. TRIS = 1 

Sets the pin in the input mode.  
TRIS = 0 Sets the pin in the output mode.  

  
  

; Toggle the green LED every half second.  
 List  P = PIC16C74A,  F = INHX8M,  C = 160,  N = 80  

ST = FF, MM = OFF, R = DEC include 
”C:\MPLAB\P16C74A.INC”  
- config ( CP OFF &  PWRTE ON & XT-OSC &  WDT OFF &  BODEN OFF) error level -302  

; Equates  
 Bank0 RAM   equ  20H  
 MaxCount equ   50  
 Green equ  0000000HB  
 TenMsH  equ   13  
 TenMsL  equ   250  

; Variables  
 cblock Bank0RAM  ;  Variables are declared  

BLNKCNT  
COUNTH 
COUNTL endc  

; Vectors  
 org  000H  
 goto  Mainline  
 org  004H  
Stop: goto 
stop 
Mainline: call 
 Initial 
 ; 
Initialize 
Main loop:  

 call  Blink  ; Blink LED  

  
D   TRIS   

Q 
  

  
  
  
  
  

D   PORT   
Q   

    
P in  write   

  
  
  
  
  
    

Data  bus   
Pin  read   



 call  TenMs  ; Inset ten millisecond delay  
indent goto Mainloop  
;Initial Subroutine Initial:  

 movlw  MaxCount  0.5 second  
 movwf  BLNKCNT  BLKCNT ← N  

 movlw  Green  
 movwf  PORTD   PORTD ← W  

bsf STATUS,RPO Set register access to bank 1 clrf TRISD 
Set PORTD as O/P port bcf STATUS,RPO Set register 
access to bank 0 return  

; Blink Subroutine. This subroutine blinks a green LED in evey 0.5 sec Blink:  

decfsz  BLNKCNT,F   ;  decrement loop counter and return if not zero 
goto BlinkEnd  
movlw MaxCount ; Reinitialize BLNKCNT movwf BLNKCNT  
movlw  GREEN   w ← Green Toggle green LED Xorwf 
PORTD,F   w ← Green Toggle green LED  

Blink End; return  
; Ten Ms subroutine (delay of 10ms) Ten Ms: 

nop movlw  TenMsH   movwf 
 COUNTH  ; COUNTH ←w movlw 

 TenMsL movwf  COUNTL   
TEN 1:  

decfsz CountL.f goto 
Ten 1 decfsz 
COUNTH,f goto Ten 1 
return  

  
  
  

Ten Ms subroutine  introduces  a delay of 10ms by counting  10,000 instruction cycles. This is achieved by 
nested loops. The sequence of instructions executed from calling Ten Ms is listed and correspond- ing 
instruction cycles are mentioned against the instructions.  

  
Instructions Call 
ten Ms  

Instruction Cycles 2 

nop  1  
movlw 13 (TenMsH)  1  
movwf COUNTH  1  
movlw 250 (Ten MsL)  1  
movwf COUNTL  1  

      

decfsz  COUNTL,F  COUNTL:250  →249→...→1 goto 
 Ten 1  3 × 249 = 747  

decfsz COUNTL,F    COUNTL: 1 → 0  2  
decfsz COUNTH,F  COUNTH: 13 → 12  1  
goto Ten 1       2  

decfsz  COUNTL,F   



COUNTL: 0→255→254...→1 goto 
 Ten 1  

255 × 3 = 765  
decfsz COUNTL,F   COUNTL:1 →0  2 decfsz COUNTH,F  COUNTH: 

12 →11   1 goto Ten 1       

Total = 10,000  

I2C  Bus for  Peripheral Chip Access  
Requires two open-drain I/O pins.  
Port-C of PIC IC can be used for I2 C communication.  

SCL (Serial Clock)  RC3/SCK/SCL  
SDA (Serial Data)  RC4/SDI/SDA  

 
Low output on SCL or SDA I/O pin set to be an output with ”0” written to it.  

 
High output on SCL or SDA I/O pin set to be an input. Transfers on the 
I2 C bus take place a bit at a time.  

 
Repeat this block 11 times as  
COUNTH:12→11→...→2→1  

770 ×11=8470  

  
decfsz COUNTL,F  goto 
Ten 1  

COUNTL:0→255→...2→1   3×255=765  

decfsz COUNTL,F    COUNTL:1→0  2  
decfsz COUNTH,F  COUNTH:1→0  2  
return  

  
  2  

 V +5   
  

PIC   
  
  

1   k      
  

"0"   
  
  
  

 V +5   
  

PIC   
  
  

1   k      
  
  
  
  
  
  



 
 The clock line, SCL, is driven by the PIC chip, which server as bus master. The open drain feature of every 

chip’s bus driver can be used by the receiver to hold the clock line low, there by signalling the transmitter 
to pause until the clock line is released by the receiver. The open drain feature is also needed if this PIC will 
ever become an I2 C slave to another PIC, in which it must relinquish control of the SCL line.  
The previous figure illustrates that the first eight bits on the SDA line are sent by the transmitter whereas 
the ninth bit is the acknowledgment bit which is sent by the receiver in response to the byte sent by the 
transmitter. For instance, when the PIC sends out a chip address, it is the transmitter, while every other 
chip on the I2 C bus is a receiver. During the acknowledgment bit time, the addressed chip is the only one 
that drives the SDA line, pulling it low in response to the masters pulse on SCL, acknowledging the reception 
of its chip address.  
When the data transfer direction is reversed that is form a peripheral chip to the PIC, which is the master , 
the peripheral chip drives the eight daa bits in response to the clock pulse from PIC. In this case, the 
acknowledge bit is driven in a special way by the PIC, which is serving as receive but also as bus master. If 
the peripheral chip is one that can send the contents of successive internal address back to the PIC, then 
PIC completes the reception of each byte and signals a request for the next byte by pulling SDA  line low in 
acknowledgment. After any number of bytes have been received by the master from the peripheral, the 
PIC can signal the peripheral to stop any further transfers by not pulling the SDA line low in 
acknowledgment.  
SDA line should be stable during high period of the clock (SCL). When the slave peripheral is driving SDA 
line , either as transmiter or acknowledge, it initiates the new bit in response to the falling edge of SCL, 
after a specified time. It maintains that bit on SDA line until the next falling edge of SCL, again afte r a 
specified hold time.  
I2 C bus transfers consist of a number of byte transfers framed between a START condition and either 
another START condition or a STOP condition. Both SDA and SCL lines are released by all drives and float  
high when bus transfers are not taking place. The PIC (I2 C bus controller)  initiates  a transfer with a START 
condition by first pulling SDA low and then pulling SCL as shown in the figure.  

SDA  

   
 START Condition  STOP Condition  

 Similarly, the PIC terminates a multiple byte transfer with the STOP condition. With both SDA and SCL initially 
low, it first releases SCL and then SDA. Both then occurrences are easily recognized by I2 C hardware in each 
peripheral chip since they both consist of a chage in SDA line which SCL is high, a condition that never 
happens in the middle of a byte transfer.  

Data bits   
( driven by transmitter )   

Acknowledge  bit   
( driven by  receiver)   

  
  
  

SDA  

SCL   

MSB   
first   

LSB   
Last   0   

0   

No Acknowledge   
  
  
  
  

Acknowledge   

  
  
  

Clock  bits   
driven by  ( master)   

SDA   
  
  

SCL   
  

SCL   
    



  
  

Data Communication protocol  
 In I2 C communication standard, there is one bus master and several slaves. It can be assumed here that the 

PIC microcontroller is the bus master and several peripheral devices connected to SDA and SCL bus are 
slaves.  
Following a start condition,  the master sends a 7-bit address of the slave on SDA line. The MSB is sent first. 
After sending 7 bit address of the slave peripheral a R/W  bit (8th   bit) is sent by the master. If R/W  bit is 0 
the following byte (after the acknowledgment) is written by the master to the addressed slave peripheral.  
If R/W  bit is 1, the following byte after the acknowledgment bit has to be read from the slave by the master. 
After sending the 7-bit address of the slave, the master sends the address of the internal register of the 
salve where from the data has to be used or written to. The subsegment access is automatically directed 
to the next address of the internal register.  
The following diagrams give the general format to write and read from several peripheral internal registers.  

 
   
  

General format to write to several peripheral internal registers or addresses.  

 

  
  

General format to from several peripheral internal registers or addresses.  
  

The 1995 I2 C bus specification includes the timing constraints for older chips designed for a maximum bit 
rate of 100kbits/s. It also includes constraints for newer fast-mode 400kbits/s parts.  



  

  

 
  

Acknowledge bit to START (restart condition)  
  
    

I2C Bus Subroutines:  

I2 C bus fast-mode timing constraints.  
STOP  
condition  

     
START  
condition 

Acknowledge  bit   
START   
condition   

  
  
  
  

SDA   
  
  

SCL   
  
  
  
  

t   LOW 
  

t   START 
  

  t   SETUP   

t   START 
  

  
  

SDA   
  
  
  
  
  

SCL   
    
  

t   STOP - START   t   STOP 
  t   START   

STOP  -   to  -   START Constraints   



SDA 

  
  

Data bit to data 
bit  

  
Parameter  Constraint   Cycles required to meet constraint  

ocs = 4MHz  
Period = 1µs  

osc = 10MHz 
Period = 0.4µs  

osc = 20MHz 
Period = 0.2µs  

tST ART  

tSET U P tHIGH 

tHOLD tLOW  

tST OP  

tST OP −ST ART  

> 0.6µ s  
> 0.1µ s  

> 0.6µ s > 

0µ s  

> 1.3µ s  

> 0.6µ s  
> 1.3µ s  

1 1 
1  

1 2  
1  
2  

2 1 
2  

1 4  
2  
4  

3 1 
3  

1 7  
3  
7  

Because the SCL pin must have an open pin output which the SDA pin must be either an input or have 
an open drain output, the I2 C subroutines will repeatedly access TRISC, the data direction register for 
PORTC, However, TRISC is located at the bank 1 address 87H, which cannot be accessed by direct addressing 
without changing RPO bit to 1.  
bsf STATUS, RPO  
Then required bit of TRISC can be changed followed by clearing RPO and reveting back to Bank 0. bcf 
STATUS, RPO  
Instead of doing this, the indirect pointer FSR can be loaded with the address of TRISC and the bit setting 
and bit clearing of TRISC can be done indirectly.  
For example, with the following definitions  

SCL equ 3  
SDA equ 4 bsf INDF, SDA will release the SDA line, letting the external pull up register pull it high or 

some I2 C chp pull it low. When FSR is used for indirect addressing, care should be taken to restore FSR 
value when a subroutine is completed and the program returns to the mainline program.  

  

  data bit   data bit   

   

  
  
  

SCL   
  

t   SETUP 
  t   HOLD   

  
  

t   HIGH 
  

t   LOW 
  



I2C  Subroutines  
  

Freq equ 4 SDA equ 4  

 SCL  equ 3  
  
  
 cblock     

 ..      

 DEVADD  ;The I2Cout subroutine transfers out three bytes:  
INTADD  
DATAOUT  
DATAIN  
TXBUFF RXBUFF  
.  
.  
endc  

;DEVADD, INTADD, and DATAOUT  
I2C  out  :  

call start  

movf DEVADD, W ; Send peripheral address with R/W¯ =0 (write) Call Tx 
movf INTADD, W Call Tx  
movf DATAOUT, W  
Call Tx  
Call Stop  ; Generate Stop condition return  

; The I2C in subroutine transfers out DEVADD (with R/W¯ =0) ; and  
INTADD, restarts, transfers out DEVADD (with R/W=1) ; and read one 
byte back into DATAIN.  

  
I2C in:   

Call Start  
movf DEVADD, W  

Call Tx  

; Generate start condition  

; Send peripheral address  R/W¯ =0 (write) 

movf INTADD, W Call Tx  ; Send peripheral’s internal address  

Call ReStart movf 
DEVADD ,W  
iorlw 0000000.1 B Call 
Tx  

; Re START  
 ; Send peripheral’s address.  
; with R/W¯ =1 (read)  

bsf TXBUFF, 7   ; NOACK the following reading of one byte  
 Call Rx  ; Read  byte  

movwf DATAIN ; inte  DATAIN Call stop  ; Generate stop 
condition return  

  
  

; The start subroutine initializes the I2C bus and then  



; generates  the  START condition on the I2C bus  
; The ReStart entry point bypadd the initialization of the  
; I2C  bus  

  
Start:    

movlw  00111011   
movwf SSPCON  ; Enable I2C Master mode.  
bcf PORTC, SDA   ; DRIVE SDA low when it is an output  
bcf PORTC, SCL  ; DRIVE SCL low when it is an output  
movlw TRISC movwf 

FSR ReStart:  
; Set indirect pointer to TRISC  

bsf INDF, SDA  ; Make sure SDA is high - I/P mode  
bsf INDF ,SCL delay 
0,1,2 not  

; Make sure SCL is high - I/P mode  

bcf INDF ,SDA delay 
0,1,2 nop  

; Make SDA low  

bcf INDF, SCL return  ; Make SCL low  

  
Stop:    

bcf INDF, SDA   ; Return SDA low  
bsf INDF, SCL delay 
0,1,2  

; Drive SCL high  

bsf INDF, SDA return  ; and then drive SDA high  

  
; The Tx subroutine sends out the byte passed to it in W.  
; It returns with z = 1 if ACK occurs.  
; It returns with z = 0 if NOACK occurs.   

Tx:    
movwf TXBUFF  
bsf STATUS, C  

  
Tx 1:   

rlf TXBUFF, F ; rotate  TXBUFF left, through carry movf TXBUFF, F ; Set  Z bit 
when all 8 bits have been transformed  

 btfss STATUS, Z  ; until z = 1  
Call Bitout ; Send  carry  bit then clear carry bit btfss 
STATUS, Z goto TX 1 Call Bit In movlw 00000001 B  
End wf RXBUFF, W  ; z = 1  if ACK   z = 0 if NOACK return  

  
; The Rx subroutine receives a byte from I2C bus into W,  
; using  RXBUFF buffer  
; Call Rx with bit 7 of TXBUFF clear for ACK  
; Call Rx with bit 7 of TXBUFF set for NOACK  

  
Rx:   movlw 00000001 B  

movwf RXBUFF  



Rx 1:   
rlf RXBUFF, F Call 
Bit In btfss 
STATUS, C goto Rx 
1 rlf TXBUFF, F 
Call BitOut movf 
RXBUFF, W return  

; The BitOut subroutine transmits, hthen clears, the carry bit BitOut:  

bcf INDF, SDA  ; copy carrybit to SDA btfsc 
STATUS, c bcf INDF, SDA  

 bsf INDF, SCL  ; pulse  clockline  
delay  0,1,2  ; t: HIGH bcf INDF, SCL 
bcf STATUS, c return  

; The bit In subroutine receives one bit into  
; bit 0 of RXBUFF  

  
BitIn:   

bsf INDF, SDA  
bsf INDF, SCL ; Drive clock line high bcf RXBUFF, 0  ; copy  
SDA to bit 0 of RXBUFF btfsc PORTC, SDA bsf RXBUFF, 0  
bcf INDF, SCL  ; Drive clock low again return  

 
 Examples of I2C bus Interfacing  

I.  DAC Interfacing  

Two digital-to-analog convste outputs are easily added to a PIC with MAX518 eight-pin DIP. Each  

255 VDD   where VDD   is the power 
output channel produces an output voltage that ranges from 0v to 256  

supply to the DAC chip. If VDD  = 5V , an output of 2.5V will appear on the OUT0 pin if the following three 
bytes are sent to the chip.  

  
  

 ’01011000’, ’00000000’  ’10000000’  

An output of 2.5 V will appear on the OUT1 pin by sending the following three bytes  

Q  
D     TRIS   

  
  

Control write   
P   in 

  
  
  

D   PORT   
  

Q   
Pin  write   

  
  
  
  
  
  

Pin  read   



  
  

 ’01011000’  ’00000001’  ’100000000’  
  

The MAX518 chip includes a power-on reset circuit that drives the two outputs to 0V initially. The two 
address inputs, AD1 and Ad0, provide an adjustable part of the chip’s I2 C address. With 5 bits fixed at 01011 
and two adjustable bits, it is possible to connect four MAC518  chips to a PIC.   



 DAC Interfacing  on  I2C bus      
      

    

 
  
  

7-bit address  
  

 
  

  
    First byte message stringof     

Write    
   

AD0  
 Match  

AD1  
      
  

Second byte  
  

1: Select OUT 1  
0: Select 

OUT 0  
  
  

1: Power-down mode  
 (   4 A, typical)  

0: Normal DAC operation  
  
  

1: Reset all  DAC Registers  
  

0: Normal DAC operation  
  
  

 Third byte  B  

Analog output voltage =VDD  
256  

II.  Interfacing  a Temperature Sensor  

0  1  0  1  1  0  0  0  

  
PIC   + 5 V   

  
  
  
  
  

k 1      

  

  
  
  
  
  
1 k      

Analog  outputs   
  
  
  

8   1   
OUT1   OUT0   

V DD 
  

  
4   

+ 5 V   
    
  
7   

  
  
  
  
  
0.1    F   

RC4   / SD1   / SDA   
  

RC3   / SCK   / SCL   

SDA   
3   SCL   
  
  

MAX 518   
Dual  8 - bit    DAC   

AD1   
AD0   

5 
  

6   
END   

2         

  0   0   0   0   0   0   0   



 National Semiconductor’s LM 75 chip combines an analog temperature transducer, an analog-to- digital  
convertor (9-bit), and an I2 C bus interface, all in a tiny S)-8 surface mount package.  The temperature range 
covered is -25o C to +100o C with ±2o C accuracy. The two’s complement form of the temperature is available 
from the 9-bit ADC. The resolution of the ADC is about 0.5o C.  

  
Temperature  Digital Output  

Binary  Decimal 
125o C  01111 1010  250  
25o C  00011 0010  50  
0.5o C  000000001  1  
0o C  00000 0000  0  

-0.5o C  11111 1111    

-25o C  11100 1110    

-55o C  11001 0010    
 LM 75 chip also includes a thermal watch dog that can be setup to interrupt PIC on its RBO/INT edge-

triggered interrupt input when the temperature rises above a programmable, TOS .  It also in- cludes 
programmable  hysteresis so that the temperature must dip down below the setpoints TOS threshold to a 
lower THY  ST  threshold before rising againpast the TOS  setpoint to generate another output edge.  



  

     
 LM 75  

  
   

O.S. stands for over temperature shutdown  

O.S. stands for over temperature shutdown.  
Register Structure  

  

  
When a ”write” message string  is sent, the first byte selects the chip for a write and the second byte loads 
the pointer register.  The write message string can stop there or it can continue with a 2-byte write of TOS 

(Over tem shutdown). Once the pointer has been set, any of their register can be read, reading two bytes 
for temperature, TOS , or THY  ST  or reading just 1 byte for the configuration register.  

  

  Pointer  

 
 0  0  Temperature (read only) default  

0 1  Configuration (read / write)  
1 0  T HYST (read / write)  

            P 1  P 0  

  
  
  
  
  
  
  
  
  
  

SDA  

SCL   
RB0   / INT   

    
  
  
  
  
  
k 1      

+ 5 V   
  
  
  
  

k 1      

    
  
  
  
  
  
  
  
  
1   SDA   
2      SCL   
3   

0.5   

  
  
  
V S 

  
8   

  
  
  
  

A 2 
      

5   
  

A 1 
      6   

  A 0 
      7   

  
GND   

4   

+ 5 V   

0.1      F   

Temperature Sensor   

  
  

T   OS 
  =   80   o   C   

  
T   HYST 

  =   75   o   C   
  
  
  
  
  
  

O.S.  
output   

+ V 5   
  0 V   



 1  1  T OS (read / write  )  
  
   

Configuration  
  

1 : Low-power shut down  
 (  1 A typical)  
0 : Normal operation 
(default)  

  
  

Other features not selected  
    
  

Temp.  
  
    
   
  

T OS  

     

  
  

T HYST  
    
  
Synchronous Serial Port Module  

  
Mid range PIC microcontroller includes a Synchronous Serial Port (SSP) module, which can be con- figured 
into either of two modes:  

  
• Serial Peripheral Interface (SPI)  

• Inter-Integrated Circuit (I2C)  

Either of these modes can be used to interconnect two oe more PIC chips to each other using a minimal  
number of wires for interconnection.  Alternatively,  either can be used to connect a PIC chip to a peripheral 
chip. In this case of the I2 C mode, the peripheral chip must also include an I2 C interface. In contrast, the 
SPI mode provides the clock and serial data lines for direct connection to shift registers, adding an arbitrary 
number of I/O pins to a PIC chips.  

  
  
Serial Peripheral Interface  

  

0  0   0    0    0    0   0    

b 8  b 7  b 6  b 5  b 4  b 
3  

b 2  b 1  b 0  X  X  X  X  X  X  X  

b 8  b 7  b 6  b 5  b 4  b 
3  

b 2  b 1  b 0  X  X  X  X  X  X  X  

  



 
 Portc three pins RC5, RC4 and RC3 are used for Synchronous Serial Interface.  These pins revert to their 

normal general purpose I/O pins if neither of the two SSP modes is selected. The SPI port requires the 
RC3/SCK pin to be an output that generates the clock signal used by the external shift registers. This output 
line characterizes the SPI’s master mode. In slave mode, RC3/SCK works as the input for the clock.  
When a byte of data is written to SSPBUF register, it is shifted out the SDO pip in synchronism with the 
emitted pulses on the SCK pin. The MSB of SSPBUF is the first bit to appear on SDO pin. Simultaneously, the 
same write to SSPBUF also initiates the 8-bit data reception into SSPBUF of whatever appears on SDI pin at 
the time of rising edges of the clock on SCK pin.  

  Clear flag  Flag set upon completion  
of transfer  

 

The SDI pin is read at these times  
CKP = 1  

  Timing with negative going pulses.  

SPI   block  within   PIC   
  
  

SSPIF   Flag   
    

PIR1   
SSPBUF   

  
  
  
  
  

RC5   / SD0   
  

RC4   / SD1   
  

RC3   / SCR   

Output  of     SSPBUF    register  
appears   MSB   first   
Input goes  to   SSPBUF    register   
MSB   first   

  Eight clock pulses are emitted  
i n response to  a   write  to  
SSPBUF    register   

  
7   6   5   4     

   2      1   0   
                



CKP = 0  

A read or write of one of the PIC’s ports, such as PORTD takes one internal clock cycle to execute. In 
contrast, a read or write of an expansion port that is implemented with an SPI-connected octal shift register 
is slowed down by an order of magnitude by the eight clock pulses as seen before.  If the SSPIF flag in the 
PIR1 register is cleared before the SPI transmission is initiated, then it will be automatically  set at the 
completion  of the transfer setting of SSSPIF flag indicated that the transferred data is in place and ready 
to be used.  

Output  port expansion        
 
  

     b 0  b 1  b 2  b 3  b 4  b 5  b 6  b 7       +5V  

 
   
  
Port configurations  

  



 
   
  

 
  beginning of each transfer  
  

SSPBUF  
13H  

Input port expansion  
  

TRISC   
87 H   

X   X   0   0   0   X   X   X     
  
  
Output  for     SCK   
Gen  purpose   o   /p to drive  latch   
Output  for     SDO   

  
  

TRISD   
H 85   

  
General  purpose   o   /p to drive  latch   

0   X   X   X   X   X   X   X     

    



 
   

 bit 0  bit 7   bit 6   bit 5  bit 4  bit 3  bit 2   bit 1  bit 0  

  
  

SPI reads  

input bit here   
  
     

Read SSPBUF   
  
  

Timing diagram  
Port configurations  

  



 
  load input  

        
  

SPI "master" with SCK = ocs 
/4  

CKP = 0 :  SK0 will idle 
low  

   SSPENSynchronous Serial Port  = 1 : enable  (  SPI )  

     

Analog-to-Digital Converter  
Fe atures (16C7X)  

  
  

• Eight input channels  

• An analog multiplexer  

• A track and hold circuit for signal on the selected input channel  

• Alternative clock sources for carrying out the conversion.  

• An adjustable autonomous sampling rate.  

• The choice of an internal or external ref. voltage.  

• 8-bit conversion  

• Interrupt  response when conversion is completed.  

SSPCON   
14 H   

  

  

0   0   1   0   0   0   0   0     

      

    



 

 Port A and Port E pins are used for analog inputs/ Reference voltage for ADC.  
Port A pins  

 
RA0/AN0 - Can be used as analog input-0 RA1/AN1 - 
Can be used as analog input-1 RA2/AN2 - Can be used 
as analog input-2  
RA3/AN3/VREF  - RA3 can be used as analog input 3 or analog reference voltage RA4/TOCKI - RA4 can 
be used as clock input to Timer-0  

 RA5/SS/AN4 - RA5 can be used as analog input 4 or the slave select for the sync serial port  

Port E pins  

RE0/RD/AN5 - Can be used as analog input  5  
RE1/W R/AN6 - Can be used as analog input  6  
RE2/CS/AN7 - Can be used as analog input  7  

  
PIC microcontroller has internal sample and hold circuit. The input signal should be stable across the 
capacitor before the conversion is initiated  



 
After waiting out the sampling time, a conversion can be initiated.  The ADC circuit will open the sampling 
switch and carry out the conversion of the input voltage as it was at the moment of opening of the switch.  
Upon completion of the conversion, the sampling switch is closed and VHOLD  again tracks VSOU RC E .  

  
  

Using the A/D Converter  
 Registers ADCON1,  TRISA, and TRISE must be initialized  to select the reference voltage and the input 

channels. The first step selects the ADC clock source from among four choices (OSC/2,  OSC/8, OSC/32, and 
RC). The constraint for selecting clock frequency is that the ADC clock period must be 1.6 mus or greater.  
The A/D modules has three registers. These registers are  

• A/D Result Register (ADRES)  

• A/D Control Register 0 (ADCONO)  

• A/D Control Register 1 (ADCON1)  

The ADCONO register as shown here, controls the operation of A/D module.  
7  6  5  4  3   2  1  0  

  
ADCS1  

  
ADCS0 

  
CHS2  

  
CHS1  

  
CHS0  

 

 
  

 

  
AD ON 

GO/DONE 

  

bit 7 - 6  
ADCS1 :  ADCS 0  

00 = Fosc/2 01 = 
Fosc/8  

10 = Fosc/32  
11 = FRC  (clock derived from an internal RC oscillator) bit 5 - 3  

CHS2: CHS0  



000 - channel  0 - AN0 001 - 
channel  1 - AN1 010 - 
channel  2 - AN2  
011 - channel  3 - AN3 100 - 
channel  4 - AN4  
101 - channel  5 - AN5  
110 - channel  6 - AN6  111 - 

channel  7 - AN7 bit 2 A/D Conversion 

Status bit  

GO/DON E if 
ADON = 1  

1 = A/D conversion is in progress (setting this bit starts the A/D conversion)  
0 = A/D conversion is not in progress (this bit is automatically  cleared by hardware when  

A/D conversion is complete.)  
 bit 1   

Unimplemented  
  
bit 0   ADON:  A/D on bit  

1 = A/D converter module is ON  
  0 = A/D converter module is OFF (not operating.)  

ADCON1 Register  
 

  bit 7  bit 0  

                 

PCFG2 

  

PCFG1 

  
PCFG0 

  
  
 PCFG2 :  PCFG0  :  A/D Port Configuration  Control  bits  
  

 PCFG2 :  PCFG0 :  A/D Port Configuration Control bits  
PCFG2 :  PCFG0  RA0  RA1  RA2  RA5  RA3  RE0  RE1  RE2  VREF  

000  A  A  A  A  A  A  A  A  VDD  
001  A  A  A  A  VREF  A  A  A  RA3  
010  A  A  A  A  A  D  D  D  VDD  
011  A  A  A  A  VREF  D  D  D  RA3  
100  A  A  D  D  A  D  D  D  VDD  
101  A  A  D  D  VREF  D  D  D  RA3  
11X  D  D  D  D  D  D  D  D  -  

    



  7  6  5  4  3  2  1  0  

 
  

 
Disable Port  E 
alternate function  

1. Configure  A/D module  

• Configure analog pins/ voltage reference/ and digital I/O (ADCON1)  

• Select A/D channel (ADCON0)  

• Select A/D conversion clock (ADCONO)  

• Turn on A/D module (ADCONO)  

2. Configure  A/D interrupt (if required)  

• Clear AD—F bit in PIR 1 reg  

• Set AD—E bit in PIE 1 reg  

• Set G—E bit  

3. Wait for required acquisitiion time  

4. Start conversion  

• Set GO/DON E  

5. Wait for A/D conversion to complete by either  

• polling dor GO/DON E bit to be cleared  

• waiting for the A/D interrupt  

6. Read A/D result register (ADRES) Clear AD—F if required.  

TRISA   X   X   X   
    

Analog  I/P   
  
  

 Digital  1: I   
  
  

0:  Digital  0   
  

1   :   D/A    I   
  

0   :   Digital   0   
  

  
0   0   0   0   

    
  
  
  

 Analog  1: /   Digital  
input   

0::  Digital  output   



Example Program  
 

A/D Conversion with Interrupt  
  

bsf STATUS, RPO ; Select  Bank1 clrf ADCON 1  ; 
Configure A/D input bsf PIE1, ADIE ; Enable A/D 
interrupt  

bcf  STATUS, RPO  ;  Select Bank 0  
movlw  0811+  ; Select fosc/32, channel 0, A/D on movwf ADCONO bcf 
 PIR1, ADIF bsf  INTCON, PEIE  

bsf  INTCON, GIE  
; Ensure that the required sampling time for the ; 
selected input channel has elapsed.  
; Then the conversion may be started  

 bsf ADCONO, GO  ;   start  A/D conversion  
;   AD| F bit will be set  

;   and  GO/DON E bit is cleared  
;   upon completion of A/D conversion  

Code structure for  large Programs  
Memory paging is essential if the code exceeds 2k of program memory (2048). PIC 16C74A supports 4096 
addresses and hence it is important to consider memory paging for this processor.  
PCL and PCLATH  
The program counter (PC) is 13-bit wide. The low byte comes from the PCL register, which is a readable and 
writable register. The upper bits (PC ¡12.8¿) are not readable, but are indirectly writable through the 
PCLATH register.  On any reset , the upper bits of the PC will be cleared. PCL← 0 and PCLATH ← 0. Two 
situations for loading the PC following any reset are given here.  

1. Any write to PCL register load the content of PCL to lower 8 bit of PC and content of PCLATH to higher 
5 bits. mov wf PCL  

 12  PCH  8   7  PCL  0  Instruction with  

 
   
  

2. PC is also loaded during a call or goto instruction  

PC   PCL   as  a  
destination   

  
  5   PCLATH      <4 :   0>   8   

  
ALU   

  
  

PCLATH   



0 ≤ k ≤ 2047  
  
Operation:    

k → PC  < 10 : 0 >  

P C LAT H   < 4 : 3 >→ PC  < 12 : 11 >  

Goto is an unconditional branch. The eleven bit immediate value is loaded into PC bits < 10 : 0 >. The upper 
bits of PC are loaded from PCLATH < 4 : 3 >.  

 
  PCLATH  
  
STACK  
The PIC16CXX family has an 8 level deep X 13-bit wide hardware stack.  The stack space is not part of either 
program or data memory and the stack pointer is not readable or writable.  The PC is pushed onto the stack 
when a CALL instruction is executed or an interrupt causes a branch. The stack os POPed  in the event of a 
RETURN, RETLW or a RETIE instruction execution. PCLATH is not affected by a PUSH or a POP operation. 
The stack operates on a circular buffer.  
Paging:  
Following any reset PCL and PCLATH are cleared to 0. For a 4k .... program memory, the address range is 
from 0000H to 0FFFH. Hence each call and goto instruction will actually reach the desired address only if 
bit 3 of PCLATH is set or cleared correctly.  However even for 4k PIC controllers, there is no need to take 
care of PCLATH bit 3, if the code size fits into 2k address space. Bit 3 of PCLATH will come out of reset in 
the zero state and there will never be a need to change it. Consequently, every call and goto instruction 
will go to the correct place.  
For large programs, it is helpful to break out blocks of code that are reached by a single call instruction and 
that terminates in a single return instruction.  Such a block of code can be placed on program memory’s 
page 1.  Then, before executing the call instruction to reach the block, the following in- struction can be 
executed. bsf PCLATH, 3  ; Switch to program memory’s Page 1.  
When it is finally time to exit from the block to return to the mainline program in Page 0, the return 
instruction is preceded by the instruction bcf PCLATH, 3  

  
  
   
Program memory allocation for  large programs  

  

PCH   PCL   
12   11   10   9   8   7   

PC   
0   Goto   ,   Call   

Instruction   
  
  
  
  
  
  
  
  

  PCLATH    <4   :   3>   
  
  
  
  

11   
  
  
Opcode   <10   :   0>   



   Hex address000      Page 0   Hex 
address800   Page 1  

      
 004    Int Service  
           

Main line Block1  
           
 Block2  
               
   

7FF FFF  

Overview of Timer 
Modules  

  
Timer-0 Overview  

 The Timer 0 module is a simple 8-bit overflow 
counter. The clock source can be either the internal clock (fosc /4) or an external clock. When the clock source 
is an external clock, the Timer-0 module can be selected to increment on either the rising or falling edge.  
Timer-0 module also has a programmable prescalar option.  This prescalar can be assigned either to Timer 
0 or the watchdog Timer.  
The counter sets a flag TOIF when it overflows and can cause an interrupt  at that time if that interrupt  
source has been enabled (TOIF=1). Timer  0 can be assigned an 8-bit prescalar that can divide the input by 
2,4,8,16,...,256. Writing to TMRO resets the prescalar assigned to it. Timer-0, or its prescalar can be 
connected to either of two input sources.  

1. fosc /4  

2. RA4/ TOCKI, the input connected to bit 4 of PORTA.  

 
  
  
 TMRO  01H      
      

  
RBPU   INTEDG   0   TOSE   1   PS2   PS1   PS0   

  
  
    

PSA   
1:   Prescaler assigned  to  

watchdog  timer   
0:   Prescaler assigned  to   

Timer  0   
  
  
  

TOCS   
1:   Timer  0   Clock source  is   

RA4   / TOCK   
0:   Timer  0   clock source  is  

f   _osc  /   4   

    
  
  
  
  

restore   PCLATH  
STATUS,   W   

retie   
.   
.   
.   

bcf   PCLATH   ,     3 
return   

  
  
  

bcf   PCLATH   ,   3   
return   

  

 
 

  

  

Store   W   ,   STATUs   
PCLATH   

bsf   PCLATH   ,     3 
goto   Int.Service   
  
  
bsf   PCLATH   ,   3   
Call Block 1   

.   

.   

.   
  

.   

.   
bsf   PCLATH   ,   3   
Call Block 2   

.   

.   



 
Timer-0 use  with prescalar     
    
  

TOCS = 0, Timer 0 clock is f _osc / 4 
OPTION_  REG  

81 
  

Prescaler assigned to   Timer0  
  
  

  
Prescaler .......  

  

0 0 0  2  
 0 0 1  4  
 0 1 0  8  

0 1 1  16  
1 0 0  32  
1 0 1  64  

 1 1 0  128  
 1 1 1  256  
  
  

   2-cycle delay 
 Presclar     

   f osc /4  

H     

PCA = 0,   
 

  0   0  PS2  PS1  PS0  

TMRO   (01H)   
8   -   bit  counter             

      



    
 Overflow     



External clock synchronization  
  
                       
  
  
  

External clock  
Input or  
Prescaler  

  output  

External clock/ 
Prescaler output 
after sampling  

  
Increment  
Timer0 ( Q4 )  

  
  

Timer 0  
  
    

Timer-1 Module  
 The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L) which 

are readable and writable. The TMR1 register pair (TMR1H: TMR1L) increments from 0000H to FFFFH and 
rolls over to 0000H. The TMR1 interrupt, if enabled, is generated on overflow which sets the interrupt flag 
bit TMR1IF-(PIR< 0 >).  This interrupt  can be enabled/disabled  by set- ting/clearing TMR1 interrupt enable 
bit TMR1IE-(PIE < 0 >)  
The operating and control modes of Timer 1 is determined by the special purpose register T1CON.  
T1CON (10H)  

  
 bit 7  0    bit 0  



 

  



Timer 1 can operate in one of the two modes.  

• As a timer. (TMR1CS = 0)  
In timer mode, Timer  1 increments in every instruction  cycle. The Timer 1 clock source is fosc /4.  Since 
the internal clock is selected, the timer is always synchronized and there is no further need of 
synchronization.  

• As a counter  (TMR1CS = 1)  
In counter mode, external clock input from the pin RCO/T1OSC/T1CKI is selected.  

  
  

Use  of Timer-2  
Timer 0:  8-bit timer/counter with 8-bit prescalar  
Timer 1: 16-bit timer/counter with prescalar, can be incremented during sleep via 

external crystal/clock.  
Timer 2: 8-bit timer/counter with 8-bit period register, prescalar, post scalar.  

  
Timer 2 Circuitry  

  
 Post Scaler  Main Scaler  Prescaler  

 
  



  
Timer  2 is an 8-bit timer with a prescalar and a port sclar. It can be used on the PWM mode of CCP modules. 
The TMR2 register is readable and writable and is cleared on any device reset. The input clock (fosc /4) has 
a prescalar  option  of 1:1, 1:4 or 1:16 selected by bits 0 and 1 of T2CON register.  
The timer 2 module has a 8-bit period register (PR2).  timer 2 increments from 00H until it matches PR2 
and then resets to 00H on the next increment cycle. PR2 is a readable and a writable register. PR2 is 
initialized to FFH on reset.  
The output of TMR2 goes through  a 4-bit post scalar (1:1, 1:2 to 1:16) to generate a TMR2 interrupt by 
setting TMR2IF flag.  

  bits  7  6  5  4  3  2  1  0  
  

T2CON 12H  

 
     

CCP overview  
The CCP module(s) can operate in one of the three modes: 16-bit capture, 16-bit compare, or upto  
1-bit Pulse Width Modulation (PWM).  
Capture mode captures the 16-bit value of TMR1 into CCPRxH: CCPRxL register pair. The capture event 
can be programmed for either the falling edge, rising edge, fourth rising edge, or the sixteenth rising edge 
of the CCPx pair.  
Compare mode compares the TMR1H: TMR1L register pair to the CCPRxH: CCPRxL register pair. When a 
match occurs an interrupt can be generated, and the output pin CCPx can be forced to given state (High or 
Low), TMR1 can be reset (CCP1)  or TMR1 reset and start A/D conversion (CCP2).  
This depends on the control bits < CCPxM3 :  CCPxM0>  
PWM mode compares the TMR2 register to a 10 bit duty cycle register (CCPRxH : CCPRxL<5:4>) as well as 
an 8-bit period register (PR2). When the TMR2 register= Duty cycle register, the CCPx pin will be forcred 
low. When TMR2=PR2, TM2 is cleared to 00H, an interrupt can be generated, and the CCPx pin, if 
programmed in the O/P mode, will be forced high.  

  
  
  

 
       

  
Prescaler   
00   C     = 1   
01   C     = 4   

x 1   C     = 16   
  
  

  0   Disable   TMR   2   
  1   Enable   TMR   2   

  
Post Scale   
0000   A = 1   
0001   A = 2   

.   

.   
1110   A = 15   
1111   A = 16   



Compare Mode  
 Timer 1 is a 16-bit counter which can be used with CCP (Capture/compare/PWM) module to drive a pin high 

or low at precisely controlled time, independent of what the CPU is doing at that time.  
The pins are Port-C RC1/CCP2 and RC2/CCP1 pins.  
Which Timer1 includes a prescalar to divide the internal  clock by 1,2,4 or 8, the choice of divide-by- one 
gives the finest resolution in setting the time of an output edge.  
Capture/Compare/PWM modules  

 Each CCP (Capture/compare/PWM) module contains a 16-bit register which can operate as a 16bit capture 
register, as a 16-bit compare register or as a PWM master/slave duty cycle register. Both CCP1 and CCP2 
are identical in operation, with the exception of the operation of the special event trigger.  
The following shows the CCP mode timer resources.  

  
CCP Mode  Timer Resource  

Capture  Timer  1  
Compare  Timer  1  

PWM   Timer  2 
  
CCP1 Module:  

 Capture/Compare/PWM Register 1 consists of two 8-bit register: CCPR1L (low byte) and CCPR2H (high byte). 
THe CCP1CON register controls the operation of CCP1. All are readable and writable.  

  
  
CCP2 Module:  

 Capture/Compare/PWM Register 2 consists of two 8-bit registers: CCPR2L (low byte) and CCPR2H (high 
byte). The CCP2CON register controls the operation of CCP2. Al are readable and writable.  

  
  
CCP1CON Register / CCP2CON Register  

  
bit 7  bit 0  

        

CCPxX 

  
CCPxY 

  

 CCPxM3 

  

 CCPxM2 

  

 
CCPxM1 

 CCPxM0 

  

bit 5-4: CCPxX : CCPxY : PWM Least Significant bits.  
Capture mode :  Unused  
Compare mode :  Unused  
PWM mode  :  These bits are the two LSBs of the PWM duty cycle.  The eight MSBs are found in 

CCPRxL. bit 3-0: CCPxM3 :  CCPxM0 :  CCPx Mode select bits. Capture Mode  
      
    Set flag bit    



    CCP1IF    

 
Compare Mode     

 
  

  

 
  
    

PWM Mode  

 In Pulse WIdth Modulation (PWM) mode, the CCPx pin produced upto a 10-bit resolution PWM output. 
Since CCP1 pin is multiplexed with PORT C data latch, the TRISC < 2 > pin must be cleared to make CCP1 
pin an output.  

 Simplified  PWM  Block Diagram  

  
  
  

RC2   /   CCP   1   
pin   

Prescal er   
1 16 ,4,   

in   PIR   1     
  
  
CCPR1H   CCPR1L   

  
  
  
  

      

  
TMR1H     

TMR1L   

Special   
event trigger   

Set flag  bit    CCP1IF  
PIR   1     < 2   >   

  
RC2   /   CCP   1   CCPR1H   CCPR1L   

  
  

Q   S   
Output   
Logic   

R   

  
  
  
match   

  
Comparato r   

  
TRISC     < 2   >   
Output Enable   

  
  
  
CCP1CON    3.0  < >   
Mode  Select   

      

  
TMR1H     

TMR1L   



 

PWM  Output  

 
   

A PWM output as ashown has a time period. The time for which the output stays high is called duty cycle.  
  
  
PWM Period  

 The PWM period is specified by writing to PR2 register. The PWM period can be calculated using the 
following formula:  

PWM period = [(P R2) + 1] × 4 × Tosc  × (TMR2 prescale value)  

PWM frequency = 1/ PWM period  
When TMR2 is equal to PR2, the following events occur on the next increment cycle.  

• TMR2 is cleared  

Period   
  
  
  
  
  
  
  
  
  

Duty  cycle   
  

TMR2   =   PR2   TMR2     = 
Duty Cycle   

TMR2   =   PR2   



• the CCP1 pin is set (if PWM duty cycle is 0  

• The PWM duty cycle is latched from CCPR1L into CCPR1H  

  
PWM duty cycle  

The PWM duty cycle is specified by writing to the CCPR1L register and to CCP1CON < 5 : 4 > bits. Up to 10-
bit resolution is available where CCPR1L contains the eight MSBs and CCP1CON < 5 : 4 > contains the two 
LSB’s. The 10-bit value is represented by CCPR1L : CCP1CON < 5 : 4 >.  
The PWM duty cycle is given by  
PWM duty cycle = (CCPR1L : CCP1CON < 5 : 4 > ). Tosc  . (TMR2 prescale value)  
Although CCPR1L and CCP1CON < 5 : 4 > can be written to at anytime, the duty cycle value is not latched  

 Post Scale  
TMR2  Prescaler  Q Counter  

  1,4,16  2 
bits  osc  

N = 
1,2,3,....15,16   
  Counting mechanism in Timer 2  
  
PWM  Mode  

  TMR 2  Q - counter  

2 - bits  
  

  
  
  Prescaler set to divide by one    
      

 Prescaler  Q - counter  

 2 - bits  2 - bits  

  

  
Prescaler programed to divide by four  

  
  

 
 into CCPR1H until a match between PR2 and TMR2 occurs. In PWM mode, CCPR1H is a read-only register.  

f   
N     eight bit  counter         

        

TMR   2   
Prescaler   

Upper two  bits   Lower two  bits   Q   -   counter   

ten bit  counter   

8   -   bit     2   -   bit s     2   -   bits     2   -   bits     
        

8   -   bit       
    

ten bit counter   
f   osc 

  

TMR   2   
8   -   bit         

      

ten bit  counter   



The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double 
buffering is essential for glitchless PWM operation. When the CCPR1H and 2-bit latch match TMR2 
concatenated with an internal 2-bit Q clock or 2-bits of prescalar, the CCP1 pin is cleared.  Maximum PWM 
resolution (bits) for a given PWM frequency can be calculated as  

log(f P foscN M     ) log2  

 
If the PWM duty cycle is longer than the PWM period, then the CCP1 pin will not be cleared.  

  
  
  

PWM Period and duty cycle  calculation Example 

Desired PWM frequency = 78.125 kHz fosc  = 20MHz 

TMR2 Prescalar = 1  

78.1251  × 103 = (P R2 + 1)4 × 20 ×
1

 
 106 PR2 = 63  

Find the maximum resolution of duty cycle that can be used with a 78.124 kHz frequency and 20 MHz 

oscillator.  

1  

78.125 × 103 = 2PWM Resolution.  

256 = 2PWM Resolution  

PWM Resolution = 8  
At most, an 8-bit resolution duty cycle can be obtained from a 78.125 kHz frequency and 20 MHz oscillator,  
ie, 0 ≤ CCPR1L : CCP1CON < 5 : 4 >≤ 255. Any value greater than 255 will result in a  
100 o /o  duty cycle. The following table gives the PWM frequency fPWM   if fosc =20MHz  

  

  
  

Duty cycle resolution  10-bit counter scale  PR2 value  Prescalar 1  Prescalar 4  Prescalar 16  
10 bit  1024  255  19.53 KHz  4.88 kHz  1.22 kHz  

≈ 10 bit  1000  249  20kHz  5kHz  1.25kHz  
8 bit  256  63  78.125kHz  19.53kHz  4.88kHz  
6 bit  64  15  312.5kHz  78.125kHz  19.53kHz  

  
Interrupt  Logic  

  



  
   
  

RBO / INT  

      
  
Peripheral  
Interrupts  

GIE   TOIE  
TOIF   

  INTE  
INTF  
RBIE  
RBIF   

  
  

PEIE   
  
  
  

TMR2IE  
TMR2IF   

  PSPIE  
PSPIF   

  
ADIE  
ADIF   

  
RCIE  
RCIF   

  
TXIE  
TXIF   

  
SSPIE  
SSPIF  
CCP1IE  
CCP1I F   
CCP2IE  
CCP2IF   

TMR1IE  
TMR1IF   



  

Four of PORTB’s pins RB7 :  RB4 have an interrupt on change feature.  Only pins 

configured on inputs can cause this interrupt to occur. The input pins (of RB7 :  

RB4) are compared with the old values on the last read of Port B. the ”mismatch” 

outputs of RB7 : RB4 are used  

together to generate the RB port change interrupt flag bit RB1F.  
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Advanced   

RISC (Reduced Instruction Set Computer)  

Machine   

[ARM]  

  

Introduction  
[Credit: The definitive guide to the ARM by Josep Yiu]  

  

An ARM processor is one of a family of CPUs based on the RISC (Reduced Instruction Set Computer) 
architecture developed by Advanced RISC Machines (ARM). ARM makes 32-bit and 64-bit RISC 
multicore processors. RISC processors are designed to perform a smaller number of types of computer 
instructions so that they can operate at a higher speed, performing more millions of instructions per 
second (MIPS).  By stripping out unneeded instructions and optimising pathways, RISC processors 
provide outstanding performance at a fraction of the power demand of CISC (complex instruction set 
computing) devices.  

  

ARM was formed in 1990 as Advanced RISC Machines Ltd., a joint venture of Apple Computer, Acorn 
Computer Group, and VLSI Technology. In 1991, ARM introduced the ARM6 processor family, and VLSI 
became the initial licensee. Subsequently, additional companies, including Texas Instruments, NEC, 
Sharp, and ST Microelectronics, licensed the ARM processor designs, extending the applications of 
ARM processors into mobile phones, computer hard disks, personal digital assistants (PDAs), home 
entertainment systems, and many other consumer products.  

  

Nowadays, ARM partners ship in excess of 2 billion ARM processors each year. Unlike many 
semiconductor companies, ARM does not manufacture processors or sell the chips directly. Instead, 



ARM licenses the processor designs to business partners, including a majority of the world’s leading 
semiconductor companies. Based on the ARM low-cost and power-efficient processor designs, these 
partners create their processors, microcontrollers, and system-on-chip solutions. This business model 
is commonly called intellectual property (IP) licensing.  

  

In addition to processor designs, ARM also licenses systems-level IP and various software IPs. To 
support these products, ARM has developed a strong base of development tools, hardware, and 
software products to enable partners to develop their own products.  

  

Architecture versions  
  

Over the years, ARM has continued to develop new processors and system blocks. These include the 
popular ARM7TDMI processor and, more recently, the ARM1176TZ(F)-S processor, which is used in 
high-end applications such as smart phones. The evolution of features and enhancements to the 
processors over time has led to successive versions of the ARM architecture. Note that architecture 
version numbers are independent from processor names. For example, the ARM7TDMI processor is 
based on the ARMv4T architecture (the T is for Thumb® instruction mode support).  

  

The ARMv5E architecture was introduced with the ARM9E processor families, including the ARM926E-
S and ARM946E-S processors. This architecture added “Enhanced” Digital Signal Processing (DSP) 
instructions for multimedia applications.  

  

With the arrival of the ARM11 processor family, the architecture was extended to the ARMv6. New 
features in this architecture included memory system features and Single Instruction–Multiple Data 
(SIMD) instructions. Processors based on the ARMv6 architecture include the ARM1136J(F)-S, the 
ARM1156T2(F)-S, and the ARM1176JZ(F)-S.  

  

Following the introduction of the ARM11 family, it was decided that many of the new technologies, 
such as the optimized Thumb-2 instruction set, were just as applicable to the lower cost markets of 
micro- controller and automotive components. It was also decided that although the architecture 
needed to be con- sistent from the lowest MCU to the highest performance application processor, 
there was a need to deliver processor architectures that best fit applications, enabling very 
deterministic and low gate count processors for cost-sensitive markets and feature-rich and 
highperformance ones for high-end applications.  



Over the past several years, ARM extended its product portfolio by diversifying its CPU develop- ment, 
which resulted in the architecture version 7 or v7. In this version, the architecture design is divided 
into three profiles:  

  

• The A profile is designed for high-performance open application platforms.  

• The R profile is designed for high-end embedded systems in which real-time performance is    

needed.  

• The M profile is designed for deeply embedded microcontroller-type systems.  

  

Let’s look at these profiles in a bit more detail:  

• A Profile (ARMv7-A): Application processors which are designed to handle complex applications 
such as high-end embedded operating systems (OSs) (e.g., Symbian, Linux, and Windows 
Embedded). These processors requiring the highest processing power, virtual memory system 
support with memory management units (MMUs), and, optionally, enhanced Java support and a 
secure program execution environment. Example products include high-end mobile phones and 
electronic wallets for financial transactions.  

• R Profile (ARMv7-R): Real-time, high-performance processors targeted primarily at the higher end 
of the real-time1 market—those applications, such as high-end breaking systems and hard drive 
controllers, in which high processing power and high reliability are essential and for which low 
latency is important.  

• M Profile (ARMv7-M): Processors targeting low-cost applications in which processing efficiency is 
important and cost, power consumption, low interrupt latency, and ease of use are critical, as well 
as industrial control applications, including real-time control systems.  

  

The Cortex processor families are the first products developed on architecture v7, and the CortexM3 
processor is based on one profile of the v7 architecture, called ARM v7-M, an architecture specification 
for microcontroller products.   

  



   

Fig:1 The Evolution of ARM Processor Architecture.  

  

  

The ARM Architecture   
[Credit: ARM systemon-chip architecture by Steve Furber]  

  

In 1990 ARM Limited was established as a separate company specifically to widen the exploitation of 
ARM technology, since when the ARM has been licensed to many semiconductor manufacturers around 
the world. It has become established as a market-leader for low-power and cost-sensitive embedded 
applications.   

No processor is particularly useful without the support of hardware and software development tools. 
The ARM is supported by a toolkit which includes an instruction set emulator for hardware modelling 
and software testing and benchmarking, an assembler, C and C++ compilers, a linker and a symbolic 
debugger.   

The ARM architecture has evolved to a point where it supports implementations across a wide spectrum 
of performance points. Over two billion parts have shipped, establishing it as the dominant architecture 
across many market segments. The architectural simplicity of ARM processors has traditionally led to 
very small implementations, and small implementations allow devices with very low power 
consumption. Implementation size, performance, and very low power consumption remain key 
attributes in the development of the ARM architecture.   

The ARM is a Reduced Instruction Set Computer (RISC), as it incorporates these typical RISC 
architecture features:   

• a large uniform register file    

• a load/store architecture, where data-processing operations only operate on register contents, not 
directly on memory contents    



• simple addressing modes, with all load/store addresses being determined from register contents and 
instruction fields only    

• uniform and fixed-length instruction fields, to simplify instruction decode.  In addition, the ARM 
architecture provides:    

• control over both the Arithmetic Logic Unit (ALU) and shifter in most data-processing instructions 
to maximize the use of an ALU and a shifter    

• auto-increment and auto-decrement addressing modes to optimize program loops    

• Load and Store Multiple instructions to maximize data throughput    

• conditional execution of almost all instructions to maximize execution throughput.  These 
enhancements to a basic RISC architecture allow ARM processors to achieve a good balance of high 
performance, small code size, low power consumption, and small silicon area.    

  

ARM registers   
[Credit: ARM architecture reference manual]  

  

ARM has 31 general-purpose 32-bit registers. At any one time, 16 of these registers are visible. The 
other registers are used to speed up exception processing. All the register specifiers in ARM 
instructions can address any of the 16 visible registers.   

The main bank of 16 registers is used by all unprivileged code. These are the User mode registers. 
User mode is different from all other modes as it is unprivileged, which means:   

• User mode can only switch to another processor mode by generating an exception. The SWI 
instruction provides this facility from program control.    

• Memory systems and coprocessors might allow User mode less access to memory and coprocessor 

functionality than a privileged mode.  Three of the 16 visible registers have special roles:   Stack 

pointer Link register   

Program counter   

Software normally uses R13 as a Stack Pointer (SP). R13 is used by the PUSH and POP instructions in T 
variants, and by the SRS and RFE instructions from ARMv6.   

Register 14 is the Link Register (LR). This register holds the address of the next instruction after a 
Branch and Link (BL or BLX) instruction, which is the instruction used to make a subroutine call. It is 
also used for return address information on entry to exception modes. At all other times, R14 can be 
used as a general-purpose register.   



Register 15 is the Program Counter (PC). It can be used in most instructions as a pointer to the 
instruction which is two instructions after the instruction being executed. In ARM state, all ARM 
instructions are four bytes long (one 32-bit word) and are always aligned on a word boundary. This 
means that the bottom two bits of the PC are always zero, and therefore the PC contains only 30 
nonconstant bits. Two other processor states are supported by some versions of the architecture. Thumb® 

state is supported on T variants, and Jazelle® state on J variants. The PC can be halfword (16-bit) and 
byte aligned respectively in these states.   

The remaining 13 registers have no special hardware purpose.   

  

Exceptions   
ARM supports seven types of exception, and a privileged processing mode for each type. The seven 
types of exception are:   

• reset    
• attempted execution of an Undefined instruction    

• software interrupt (SWI) instructions, can be used to make a call to an operating system    

• Prefetch Abort, an instruction fetch memory abort    

• Data Abort, a data access memory abort    

• IRQ, normal interrupt    

• FIQ, fast interrupt.  When an exception occurs, some of the standard registers are replaced with 
registers specific to the exception mode. All exception modes have replacement banked registers for 
R13 and R14. The fast interrupt mode has additional banked registers for fast interrupt processing. 
 When an exception handler is entered, R14 holds the return address for exception processing. This 
is used to return after the exception is processed and to address the instruction that caused the 
exception.  Register 13 is banked across exception modes to provide each exception handler with a 
private stack pointer. The fast interrupt mode also banks registers 8 to 12 so that interrupt processing 
can begin without the need to save or restore these registers.  There is a sixth privileged processing 
mode, System mode, which uses the User mode registers. This is used to run tasks that require 
privileged access to memory and/or coprocessors, without limitations on which exceptions can 
occur during the task.    

Status registers   
All processor state other than the general-purpose register contents is held in status registers. The 
current operating processor status is in the Current Program Status Register (CPSR). The CPSR holds:   

• four condition code flags (Negative, Zero, Carry and oVerflow).    



• one sticky (Q) flag (ARMv5 and above only). This encodes whether saturation has occurred in 
saturated arithmetic instructions, or signed overflow in some specific multiply accumulate 
instructions.    

• four GE (Greater than or Equal) flags (ARMv6 and above only). These encode the following 
conditions separately for each operation in parallel instructions:   

       —  whether the results of signed operations were non-negative    

       —  whether unsigned operations produced a carry or a borrow.    

• two interrupt disable bits, one for each type of interrupt (two in ARMv5 and below).    

• one (A) bit imprecise abort mask (from ARMv6)    

• five bits that encode the current processor mode.    

• two bits that encode whether ARM instructions, Thumb instructions, or Jazelle opcodes are being  
 executed.    

• one bit that controls the endianness of load and store operations (ARMv6 and above only). Each 
exception mode also has a Saved Program Status Register (SPSR) which holds the CPSR of the task 
immediately before the exception occurred. The CPSR and the SPSRs are accessed with special 
instructions.    

  

  

Table:1 Status register summary  



  

  

  

  

  

  

Instruction set   
[Credit: Jin-Fu Li, National Chiao-Tung University]  

  

ARM processor is a 32-bit architecture.   
Most ARM’s implement two instruction sets –   

• 32-bit ARM instruction set  
• 16-bit Thumb instruction set   

  

ARM processor supports 6 data types   

• – 8-bits signed and unsigned bytes   
• – 16-bits signed and unsigned half-word, aligned on 2-byte boundaries   
• – 32-bits signed and unsigned words, aligned on 4-byte boundaries   
• ARM instructions are all 32-bit words, word-aligned; Thumb instructions are half-words, 

aligned on 2- byte boundaries   
• ARM coprocessor supports floating-point values   

  

ARM has 37 registers, all of which are 32 bits long  

• 1 dedicated program counter   
• 1 dedicated current program status register   
• 5 dedicated saved program status registers   
• 31 general purpose registers   

  

The current processor mode governs which bank is accessible   

– User mode can access   

• A particular set of r0 – r12 registers   

• A particular r13 (stack pointer, SP) and r14 (link register. LR)   

• The program counter, r15 (PC)   



• The curent program status register, CPSR   

– Privileged modes (except system) can access   

• A particular SPSR (Saved Program Status Register)   

  

  

  

  

  

  
  

  

  

  

Register banking  

  
  

Fig:2 Register banking  



  

Program Counter   
When the processor is executing in ARM state:   

• All instructions are 32 bits wide   
• All instructions must be word-aligned   
• Therefore, the PC value is stored in bits [32:2] with bits [1:0] undefined (as instruction cannot  

be half word)   
When the processor is executing in Thumb state:   

• All instructions are 16 bits wide   
• All instructions must be half word-aligned   

• Therefore, the PC value is stored in bits [32:1] with bits [0] undefined (as instruction cannot  
be byte-aligned)   

  

Current Program Status Registers (CPSR)  

  
Condition code flags:   

– N: Negative result form ALU   

– Z: Zero result from ALU   

– C: ALU Operation Carried out   

– V: ALU operation overflowed   

  

Interrupt disable bits:   

– I = 1, disable the IRQ   

– F = 1, disable the FIQ   

  

T Bit   



– Architecture xT only   

– T = 0, processor in ARM state    

– T = 1, processor in Thumb state   

  

Mode bits   

– Specify the processor mode   

  
Sticky overflow flag – Q flag   

– Architecture 5TE only   

– Indicates if saturation has occurred during certain operations state   

Processor Modes   

• ARM has seven basic operation modes   
• Mode changes by software control or external interrupts   

  

Features of the ARM Instruction Set   

• Load-store architecture   
– Process values which are in registers   
– Load, store instructions for memory data accesses   

• 3-address data processing instructions   
• Conditional execution of every instruction   
• Load and store multiple registers   
• Shift, ALU operation in a single instruction   
• Open instruction set extension through the coprocessor instruction   
• Very dense 16-bit compressed instruction set (Thumb)   



Thumb  
• Thumb is a 16-bit instruction set   

– Optimized for code density from C code  –  Improved 
performance form narrow memory   

– Subset of the functionality of the ARM instruction set   
• Core has two execution states – ARM and Thumb  – Switch between them using BX 

instruction   
• Thumb has characteristic features:   

– Most Thumb instruction are executed unconditionally   
– Many Thumb data process instruction use a 2-address format   

– Thumb instruction formats are less regular than ARM instruction formats, as a result of the 
dense encoding.   

32-bit instruction set   
• Data processing instructions   
• Data transfer instructions   
• Control flow instructions   

  

  

  

  



ARM Instruction Set Summary   

 



 

Data Processing Instruction   

• Consist of   
– Arithmetic (ADD, SUB, RSB)   

– Logical (BIC, AND)   

– Compare (CMP, TST)   
– Register movement (MOV, MVN)   

• All operands are 32-bit wide; come from registers or specified as literal in the instruction  
itself   

• Second operand sent to ALU via barrel shifter   
• 32-bit result placed in register; long multiply instruction produces 64-bit result   
• 3-address instruction format   

  



Conditional Execution   

  
  

Data Processing Instructions   

• Simple register operands   
• Immediate operands   
• Shifted register operands   
• Multiply   

Simple Register Operands   
ADD r0,r1,r2   ;r0:=r1+r2   

ADC r0,r1,r2    ;r0:=r1+r2+C  

SUB r0,r1,r2    ;r0:=r1–r2  

SBC r0,r1,r2    ;r0:=r1–r2+C–1  

RSB r0,r1,r2    ;r0:=r2–r1, reverse subtraction 

RSC r0,r1,r2    ;r0:=r2–r1+C–1  
By default, data processing operations do no affect the condition flags   

  



Bit-wise Logical Operations   

AND r0,r1,r2 ;r0:=r1ANDr2  ORR 

r0,r1,r2 ;r0:=r1ORr2   

EOR r0,r1,r2 ;r0:=r1XORr2   

BIC r0,r1,r2 ;r0:=r1AND (NOT r2), bit clear   

Simple Register Operands   
Register Movement Operations   

– Omit 1st source operand from the format   

MOV r0,r2     ;r0:=r2  

MVN r0,r2     ;r0:=NOT r2, move 1’s complement  

  

Comparison Operations   

– Not produce result; omit the destination from the format   

– Just set the condition code bits (N, Z, C and V) in CPSR   

CMP r1,r2 ;set cc on r1 - r2, compare  

CMN r1,r2 ;set cc on r1 + r2, compare negated  

TST r1,r2 ;set cc on r1 AND r2, bit test  

TEQ r1,r2 ;set cc on r1 XOR r2, test equal  

Immediate Operands   
Replace the second source operand with an  immediate 

operand, which is a literal constant,    preceded 

by “#”   

 ADD r3,r3,#1  ;r3:=r3+1  



AND r8,r7,#&FF ;r8:=r7[7:0], &:hexadecimal Since the immediate value is coded 
within the 32 bits of the instruction, it is not possible to enter every possible 32-bit value as an 
immediate.   

Shift Register Operands   
– ADD r3,r2,r2,LSL#3 ;r3 := r2 + 8 * r1   

• A single instruction executed in a single cycle   

• LSL: Logical Shift Left by 0 to 31 places, 0 filled at the lsb end   
• LSR, ASL (Arithmetic Shift Left), ASR, ROR (Rotate Right), RRX (Rotate Right eXtended 

by 1 place)   

Data Processing Instructions   

  

Single Register Data Transfer   
• Word transfer – LDR / STR   
• Byte transfer – LDRB / STRB   
• Halfword transfer – LDRH / STRH   
• Load singled byte or halfword-load value and sign extended to 32 bits – LDRSB / LDRSH   



• All of these can be conditionally executed by inserting the appropriate condition code after 
STR/LDR   

Addressing   
Register-indirect addressing   

Base-plus-offset addressing   

– Base register • r0–r15   

– Offset, and or subtract an unsigned number • Immediate   

• Register (not PC)   

• Scaled register (only available for word and unsigned byte instructions)   

Stack addressing   

Block-copy addressing   

  

Control Flow Instructions   

• Branch instructions   
• Conditional branches   
• Conditional execution   
• Branch and link instructions   
• Subroutine return instructions   
• Supervisor calls   
• Jump tables   

Conditional Branch   
  



  

ARM Processor Programming in C using ARM development 
tools  

 [Credit: ARM systemon-chip architecture by Steve Furber]  

Software development for the ARM is supported by a coherent range of tools devel- oped by ARM 
Limited, and there are also many third party and public domain tools available, such as an ARM 

backend for the gcc C compiler.   

The ARM C compiler is compliant with the ANSI (American National Standards Institute) standard for  

C and is supported by the appropriate library of standard functions. It uses the ARM Procedure Call 
Standard (see Section 6.8 on page 175) for all externally available functions. It can be told to produce 
assembly source output instead of ARM object format, so the code can be inspected, or even hand 
optimized, and then assembled subsequently. The compiler can also produce Thumb code.   

  



  

Fig:3 The structure of the ARM cross-development toolkit.  

  

The ARM Development Board is a circuit board incorporating a range of compo- nents and interfaces 
to support the development of ARM-based systems. It includes an ARM core (for example, an 
ARM7TDMI), memory components which can be configured to match the performance and buswidth 
of the memory in the target sys- tem, and electrically programmable devices which can be configured 
to emulate application-specific peripherals. It can support both hardware and software development 
before the final application-specific hardware is available.   

ARM Limited supplies the complete set of tools described above, with some support utility programs 
and documentation, as the 'ARM Software Development Toolkit'. The Toolkit CD-ROM includes a PC 
version of the toolset that runs under most ver- sions of the Windows operating system and includes 
a full Windows-based project manager. The toolkit is updated as new versions of the ARM become 
available.   
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Embedded system  

  

What is Embedded Systems?  

Embedded system is defined as a way of working, performing or organizing one or many tasks 

according to a fixed set of rules (or) an arrangement in which all the units assemble and work 

together according to the program or plan. Examples of embedded systems are a watch and 

washing machine.  

  Fig. 4.1  

  

Embedded System  

An embedded system is a system that has software embedded in computer hardware. It makes 

a system dedicated to a specific part of an application or product of a larger system. Depending 

on the application, embedded system may be programmable or nonprogrammable. Examples 

of embedded systems include various products such as washing machine, microwave ovens, 

cameras, printers and automobiles. They use microprocessors and microcontrollers as well as 

specially designed processors such as digital signal processors (DSP).  

  

Basics of Embedded Systems  

The embedded systems basics include the components of embedded system hardware, 

embedded system types and several characteristics. An embedded system has three main 

components: Embedded system hardware, Embedded system software and Operating system.  



      Fig 4.2  

  

Embedded System Block Diagram Embedded 

System Hardware:  

As with any electronic system, an embedded system requires a hardware platform on which it 

performs the operation. Embedded system hardware is built with a microprocessor or 

microcontroller. The embedded system hardware has elements like input output (I/O) 

interfaces, user interface, memory and the display. Usually, an embedded system consists of:  

• Power Supply  

• Processor  

• Memory  

• Timers  

• Serial communication ports  

• Output/Output circuits  

• System application specific circuits Embedded System Software:  

The embedded system software is written to perform a specific function. It is typically written 

in a high level format and then compiled down to provide code that can be lodged within a non-

volatile memory within the hardware. An embedded system software is designed to keep in 

view of the  three limits:  

• Availability of system memory  

• Availability of processor’s speed  
• When the system runs continuously, there is a need to limit power dissipation for events 

like stop, run and wake up.  



Real Time Operating System  

A system is said to be real time, if it is essential to complete its work and deliver its service on 

time. Real time operating system manages the application software and affords a mechanism 

to let the processor run. The Real Time operating system  is responsible for handling the 

hardware resources of a computer and host applications which run on the computer.  

An RTOS is specially designed to run applications with very precise timing and a high amount 

of reliability. Especially, this can be important in measurement and industrial automation 

systems wherein downtime is costly or a program delay could cause a safety hazard.  

  

  

  

DIFFERENCE BETWEEN MICROPROCESSOR AND  
MICROCONTROLLER  
  

  

  

Microprocessor is an IC which has only the CPU inside them i.e. only processing power such 

as Intel's Pentium 1,2,3,4 or core 2 due, i3, i5 etc..  

  

These microprocessors don't have RAM, ROM and other peripheral on the chip. A system 

designer has to add them externally to make them functional.  

  

Application of microprocessor includes Desktop PC's Laptops, notepads, any computation 

systems , defense systems and network communications.  

But this is not the case with Microcontrollers. Microcontroller has a CPU, in addition with a 

fixed amount of RAM, ROM and other peripherals all embedded on a single chip.  It is also 

termed as a mini computer or a computer on a single chip. Microcontrollers are designed to 

perform specific tasks. Specific means applications where the relationship of input and output 

is defined.  



Depending on the input, some processing needs to be done and output is delivered. For 

example: keyboard, mouse, washing machine, digicam, pendrive, remote, microwave, cars, 

bikes, telephone, mobiles, watches, etc..  

Since the applications are very specific, they need small resources like RAM, ROM, I/O ports 

etc and hence can be embedded on a single chip. This in turn reduces the size and the cost.  

Microprocessor find applications where tasks are unspecified like developing software, 

games, websites, photo editing, creating documents etc.. In such cases the relationship 

between input and output is not defined. They need high amount of resources like RAM, 

ROM, I/O ports etc.  

The clock speed of the Microprocessor is quite high as compared to Microcontroller. Whereas 

Microcontrollers operates from a few MHz to 30-50 MHz, today's Microprocessors operates 

above 1GHz as they perform complex tasks.  

Comparing Microprocessors and Microcontrollers in terms of cost is not justified.  

Undoubtedly a microcontroller is far cheaper than a microprocessor.  

However Microcontroller cannot be used in place of microprocessor and doing that is not 

advisable. As it makes the application quite costly.   

Microprocessor cannot be used stand alone. They need other peripherals like RAM, ROM, 

Buffer, I/O ports etc.. and hence a system designed around a microprocessor is quite costly.  

https://www.quora.com/What-is-the-difference-between-a-microprocessor-andmicrocontroller   

  

  

  

  

  

Embedded Real-Time Systems vs. General-Purpose Computers Embedded 
real-time systems have two main characteristics:  
1. They have a computer buried inside, but the users don't perceive them as computers.  

2. They often must respond to external events in a timely fashion, which means that for all 

practical purposes, a late computation is just as bad as an outright wrong computation.  



Vague as it is, this definition can gain the most strength by contrasting real-time embedded 

systems with general-purpose computers (such as desktop PCs), in which the two main 

characteristics are either nonexistent or far less important. So, you can read embedded to mean 

"not for general-purpose computing" and real-time to mean "dedicated to an application with 

timeliness requirements." Either way, the definition emphasizes that embedded systems pose 

different challenges and require different programming strategies than general-purpose 

computers. I strongly disagree with the opinion that embedded real-time developers face all the 

challenges of "regular" software development plus the complexities inherent in embedded real-

time systems. Although each domain has its fair share of difficulties, each also offers unique 

opportunities for simplification, so embedded-systems programmers specifically do not have 

to cope with many problems encountered in programming general-purpose computers.  

Consider for example the challenges of programming a desktop PC. As far as hardware is 

concerned, no desktop application can rely on a specific amount of memory available to it or 

on how many and what kind of disk drives, network cards, graphics adapters, and other 

peripherals are present and available at the moment. The software environment is even less 

predictable. Users frequently install and remove applications and application components from 

all possible sources (remember the Windows DLL Hell?). All the time, users launch, close, or 

crash their applications -- drastically changing the CPU load and availability of memory and 

other resources. The desktop operating system has the tough job of allocating CPU cycles, 

memory, and other resources among constantly changing tasks in such a way that each receives 

a fair share of the resources and no single task can hog the CPU. To succeed in this harsh 

environment, the desktop OS has no other option but to drastically limit the applications. All 

applications must strictly comply with a specific API (such as Win32 or a Unix API). Interrupt 

handling is black magic reserved for device drivers that common mortals (application 

programmers) better not touch. Fiddling directly with external hardware is prohibited.  

This scheme is diametrically opposed to the needs of embedded real-time systems, in which a 

specific task must gain control right now and run until it produces the appropriate output. 

Fairness isn't part of real-time programming -- meeting the deadlines is. To achieve this, 

however, embedded software must have full control over the CPU, memory and all the external 

hardware. Restricted to a desktop-style API, an embedded developer not only loses control that 

he so badly needs, but must bend backwards just to flash an LED, let alone to service an 

interrupt. The increased security of a desktop API in the embedded domain is bogus too. In an 

embedded system, the specific application code is at least as critical as the generic OS (many 



embedded systems don't use an OS at all), so a failure in the application renders the system 

useless regardless of the security mechanisms built into the OS.  

  

  

Characteristics  of  an  Embedded  System  

  
• Single-functioned − An embedded system usually performs a specialized operation 

and does the same repeatedly. For example: A pager always functions as a pager.  

• Tightly constrained − All computing systems have constraints on design metrics, but 

those on an embedded system can be especially tight. Design metrics is a measure of 

an implementation's features such as its cost, size, power, and performance. It must be 

of a size to fit on a single chip, must perform fast enough to process data in real time 

and consume minimum power to extend battery life.  

• Reactive and Real time − Many embedded systems must continually react to changes 

in the system's environment and must compute certain results in real time without any 

delay. Consider an example of a car cruise controller; it continually monitors and reacts 

to speed and brake sensors. It must compute acceleration or deaccelerations repeatedly 

within a limited time; a delayed computation can result in failure to control of the car.  

• Microprocessors based − It must be microprocessor or microcontroller based.  

• Memory − It must have a memory, as its software usually embeds in ROM. It does not 

need any secondary memories in the computer.  

• Connected − It must have connected peripherals to connect input and output devices.  

• HW-SW systems − Software is used for more features and flexibility. Hardware is used 

for performance and security.  



   Fig 4.3  

Advantages  

• Easily Customizable  

• Low power consumption  

• Low cost  

• Enhanced performance  

  

   

  

  

  

CLASSIFICATIONS OF EMBEDDED SYSTEM  

Embedded systems are classified into four categories based on their performance and functional 

requirements:  

• Standalone embedded systems  

• Real time embedded systems  

• Networked embedded systems  
• Mobile embedded systems  

Embedded Systems are classified into three types based on the performance of the 

microcontroller such as  



• Small scale embedded systems  

• Medium scale embedded systems  

• Sophisticated embedded systems  

Stand Alone Embedded Systems  

Standalone embedded systems do not require a host system like a computer, it works by itself. 

It takes the input from the input ports either analog or digital and processes, calculates and 

converts the data and gives the resulting data through the connected device-Which either 

controls, drives or displays the connected devices. Examples for the stand alone embedded 

systems are mp3 players, digital cameras, video game consoles, microwave ovens and 

temperature measurement systems.  

Real Time Embedded Systems  

A real time embedded system is defined as, a system which gives a required o/p in a particular 

time.These types of embedded systems follow the time deadlines for completion of a task. Real 

time embedded systems are classified into two types such as soft and hard real time systems.  

Networked Embedded Systems  

These types of embedded systems are related to a network to access the resources. The 

connected network can be LAN, WAN or the internet. The connection can be any wired or 

wireless. This type of embedded system is the fastest growing area in embedded system 

applications. The embedded web server is a type of system wherein all embedded devices are 

connected to a web server and accessed and controlled by a web browser. Example for the LAN 

networked embedded system is a home security system wherein all sensors are connected and 

run on the protocol TCP/IP  

Mobile Embedded Systems  

Mobile embedded systems are used in portable embedded devices like cell phones, mobiles, 

digital cameras, mp3 players and personal digital assistants, etc. The basic limitation of these 

devices is the other resources and limitation of memory.  

Small Scale Embedded Systems  



These types of embedded systems are designed with a single 8 or 16-bit microcontroller, that  

may even be activated by a battery. For developing embedded software for small scale 

embedded systems, the main programming tools are an editor, assembler,  cross assembler and 

integrated development environment (IDE).  

Medium Scale Embedded Systems  

These types of embedded systems design with a single or 16 or 32 bit microcontroller, RISCs 

or DSPs. These types of embedded systems have both hardware and software complexities. For 

developing embedded software for medium scale embedded systems, the main programming 

tools are C, C++, JAVA, Visual C++, RTOS, debugger, source code engineering tool, simulator 

and IDE.  

Sophisticated Embedded Systems  

These types of embedded systems have enormous hardware and software complexities, that 

may need ASIPs, IPs, PLAs, scalable or configurable processors. They are used for cuttingedge 

applications that need hardware and software Co-design and  components which have to 

assemble  in the final system.  

   

APPLICATIONS OF EMBEDDED SYSTEMS:  

  

Embedded systems are used in different applications like automobiles, telecommunications, 

smart cards, missiles, satellites, computer networking and digital consumer electronics.  

  
Embedded Systems in Automobiles and in telecommunications  

• Motor and cruise control system  

• Body or Engine safety  

• Entertainment and multimedia in car  

• E-Com and Mobile access  

• Robotics in assembly line  



• Wireless communication  

• Mobile computing and networking  

Embedded Systems in Smart Cards, Missiles and Satellites  

• Security systems  

• Telephone and banking  

• Defense and aerospace  

• Communication  

  

Embedded Systems in Peripherals  & Computer Networking  

• Displays and Monitors  

• Networking Systems  

• Image Processing  

• Network cards and printers  

Embedded Systems in Consumer Electronics  

• Digital Cameras  

• Set top Boxes  

• High Definition TVs  

• DVDs  
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Question :  

1. Mention some application of Embedded Systems.  

2. Differentiate between microprocessor and microcontroller.  

  

  

  

MODULE – VI  

  

Real-Time Operating System (RTOS)  

  

What Is a Real-Time Operating System (RTOS)  
The heightened reliance on technology to execute crucial tasks led to the development of high-

performance and deterministic operating systems, including real-time operating 

systems(RTOS). An operating system is software that facilitates hardware to receive and 

execute user commands. Operating systems are needed for scheduling tasks, memory and file 

management, and for access to hardware resources.  

A real-time operating system (RTOS) is an operating system that works in real time, with 

deterministic constraints that require efficient time usage and power to process incoming data 

and relay the expected results without any unknown or unexpected delays. RTOS software is 

time dependent, meaning that it should process input and offer output within a short 

predetermined deterministic period. However the key to an RTOS, and the most important 

demand of RTOS software is that a request and response for data is guaranteed to occur. If a 

Windows OS has request and response calls that are fast 90% of the time, yet the remaining 

10% of the time an input/output request takes too long, then the real-time application is not 

performing correctly. Thus an RTOS is not meant to be only fast, it is more importantly meant 

to be dependable  

  



Components of a RTOS  
  

A real-time operating system includes multiple components:  

The scheduler: This is the main RTOS element that determines the order of execution of tasks 

or threads usually based on a priority scheme, and either in a run to completion or round robin 

fashion. Some RTOS may try to load balance thread across processors but most require 

developers to assign process affinity to cores to optimize real-time application resource usage.  

Symmetric Multiprocessing (SMP): An RTOS has the ability to handle and separate multiple 

tasks or threads so that they can be run on multiple cores to allow for parallel processing of 

code (i.e. multitasking).  

Function library: Is a standard interface that can contain an application program interface (API) 

to call routines within it, this is the interface that connects that application code and the kernel. 

Application code entities direct requests to the kernel via the function library to prompt the 

application to give the desired programmatic behavior.  

Fast dispatch latency/context switch time: Dispatch latency represents the time from when the 

operating system identifies that a task has finishedanuntil a ready to run thread is started or 

when an event is triggered that causes a higher priority tasks to preempt a currently running 

task. The context switch is the time it takes for the scheduled to switch from one running thread 

to another thread, this involved saving off the context of the current task and replacing it with 

the context of the new thread to run.In an RTOS, the switching time should remain 

deterministic and minimal.  

User-defined data objects and classes: An RTOS relies on programming languages with data 

structures that are organized based on their type of operation. The user defines object sets 

through a specified programming language like C++ that the RTOS will use in to control the 

specified application.  

Memory Management: Memory management is required to allocate memory for every program 

to be run or object to be referenced in memory. In an RTOS this is important, since unlike 

General Purpose OSes like Windows it can’t afford to have memory paged in or out since it 

leads to non-deterministic behavior.  

  

  

Types of Real-Time Operating Systems  



  

Real-time operating systems are classified into three types:  

Soft real-time systems  

Meeting command deadlines in soft real-time operating systems is not compulsory for every 

task. However, the systems should always give the expected results. A soft RTOS requires that 

a response be logically correct and occur before a certain deadline or the result becomes 

increasingly inaccurate. Essentially the result can still hold some value even though it occurred 

after the required deadline.  

Hard real-time systems  

A hard real-time system is a time constrained and deterministic system that responds within a 

specified time frame. They are dictated by deadlines, latency and time constraints. For instance, 

if an output is expected within 10 seconds, the system should process the input and give out the 

output by the 10th second. Note that the output should not be released by the 9th or 11th second 

to prevent the system from failing.  

Applications of Real-Time Operating Systems  

  

An RTOS can be flexible but is usually designed for set purposes. Most RTOS subsystems are 

assigned certain tasks and leave anything and everything else not designated to it for the 

Windows OS itself to handle. An RTOS offers mostly operational solutions, including 

applications such as:  

Control systems: The RTOS is used to monitor and execute control system commands. 

Realtime systems are used to control actuators and sensors for functions like digital controllers. 

Controlled systems include aircraft, brakes, and engines. Controlled systems are monitored 

with the help of sensors and altered by actuators. The RTOS reads the data from sensors and 

then performs calculations and moves the actuators so that movement in a flight can be 

simulated.  

Image processing: Computers, mobile gadgets, and cameras must achieve their intended duty 

in realtime, which means that visual input is needed in real-time with the utmost precision so 

that industrial automation, for instance can control what is happening on conveyors or an 

assembly line when an item is moving down its path and there is a defect, or the item has moved 



its location. Real-time image processing is essential for making real-time adjustments for 

moving objects.  

Voice over IP (VoIP): VoIP relies on Internet protocols to transmit voices in real time. As 

such, VoIP can be implemented on any IP network like intranets, local area networks, and the 

Internet. The voice is digitalized, compressed and converted to IP packets in real time before 

being transmitted over an IP network.  

  

  

  

  

Considerations for Choosing an RTOS  
  

Performance is a core factor that must be considered when choosing an RTOS. Real-time 

operating systems are different and perform differently. Key aspect for an RTOS is that its 

determinism guarantees that request and responses of data happen within a set period of time 

no matter what else is happening in the PC system. When determining the best RTOS, ask 

questions such as whether the system is showing any jitter within your tolerance range and 

thereby providing the determinism that you need. RTOS performance should be determined by 

a system’s dependable in executing calls within a specified period, regardless of anything else 

happening on the system.  

  

A real-time operating system should be of premium quality and easy to navigate. Developing 

embedded projects is hard and time-consuming; developers should not have to struggle with 

real-time system-related issues that can be distracting. An RTOS should be a trusted component 

that any developer can count on.  

Good examples of real-time operating systems are the RTX (32-bit) and RTX64 (64-bit) 

solutions that allow you and your team to focus on adding value to your applications. This 

software is designed to serve as a hard real-time system that delivers output within a specified 

time frame to improve embedded systems’ quality.  

  

  

PROGRAMS, PROCESSES, TASKS AND THREADS   



The above four terms are often found in literature on OS in similar contexts. All of them refer 

to a unit of computation. A program is a general term for a unit of computation and is typically 

used in the context of programming. A process refers to a program in execution. A process is 

an independently executable unit handled by an operating system. Sometimes, to ensure better 

utilization of computational resources, a process is further broken up into threads. Threads are 

sometimes referred to as lightweight processes because many threads can be run in parallel, 

that is, one at a time, for each process, without incurring significant additional overheads. A 

task is a generic term, which, refers to an independently schedulable unit of computation, and 

is used typically in the context of scheduling of computation on the processor. It may refer 

either to a process or a thread.  

  

MULTITASKING   

A multitasking environment allows applications to be constructed as a set of independent tasks, 

each with a separate thread of execution and its own set of system resources. The intertask 

communication facilities allow these tasks to synchronize and coordinate their activity. 

Multitasking provides the fundamental mechanism for an application to control and react to 

multiple, discrete real-world events and is therefore essential for many real-time applications. 

Multitasking creates the appearance of many threads of execution running concurrently when, 

in fact, the kernel interleaves their execution on the basis of a scheduling algorithm. This also 

leads to efficient utilization of the CPU time and is essential for many embedded applications 

where processors are limited in computing speed due to cost, power, silicon area and other 

constraints. In a multi-tasking operating system it is assumed that the various tasks are to 

cooperate to serve the requirements of the overall system. Co-operation will require that the 

tasks communicate with each other and share common data in an orderly an disciplined manner, 

without creating undue contention and deadlocks. The way in which tasks communicate and 

share data is to be regulated such that communication or shared data access error is prevented 

and data, which is private to a task, is protected. Further, tasks may be dynamically created and 

terminated by other tasks, as and when needed.   

To realize such a system, the following major functions are to be carried out.   

A. Process Management   

• Interrupt handling  



• Task scheduling and dispatch   

• Create/delete, suspend/resume task   

• Manage scheduling information – priority, scheduling policy etc   

  

B. Interprocess Communication and Synchronization  

• Code, data and device sharing   

• Synchronization, coordination and data exchange mechanisms   

• Deadlock and Livelock detection  

  

  

  

  

  

  

  
  

Interrupt in RTOS  

In systems programming, an interrupt is a signal to the processor.   

It can be emitted either by hardware or software indicating an event that needs immediate 

attention.  

1. Hardware interrupt   

A hardware interrupt is a signal which can tell the CPU that something happen in hardware 

device, and should be immediately responded. Hardware interrupts are triggered by 

peripheral devices outside the microcontroller. An interrupt causes the processor to save its 

state of execution and begin execution of an interrupt service routine.  



Unlike the software interrupts, hardware interrupts are asynchronous and can occur in the 

middle of instruction execution, requiring additional care in programming. The act of 

initiating a hardware interrupt is referred to as an interrupt request (IRQ).  

  

2. Software interrupt   

Software interrupt is an instruction which cause a context switch to an interrupt handler 

similar to a hardware interrupt. Usually it is an interrupt generated within a processor by 

executing a special instruction in the instruction set which causes an interrupt when it is 

executed.   

Another type of software interrupt is triggered by an exceptional condition in the processor 

itself. This type of interrupt is often called a trap or exception.  

Unlike the hardware interrupts where the number of interrupts is limited by the number of 

interrupt request (IRQ) lines to the processor, software interrupt can have hundreds of 

different interrupts.  

  

Interrupt latency  

Interrupt latency refers primarily to the software interrupt handling latencies. In other words, 

the amount of time that elapses from the time that an external interrupt arrives at the processor 

until the time that the interrupt processing begins. One of the most important aspects of kernel 

real-time performance is the ability to service an interrupt request (IRQ) within a specified 

amount of time.  

Here are the sources contributing the interrupt latency   

Operating system (OS) interrupt latency  

  

An RTOS must sometimes disable interrupts while accessing critical OS data structures. The 

maximum time that an RTOS disables interrupts is referred to as the OS interrupt latency. 

Although this overhead will not be incurred on most interrupts since the RTOS disables 

interrupts relatively infrequently, developers must always factor in this interrupt latency to 

understand the worst-case scenario.  



Low-level interrupt-related operations  

  

When an interrupt occurs, the context must be initially saved and then later restored after the 

interrupt processing has been completed. The amount of context that needs to be saved depends 

on how many registers would potentially be modified by the ISR (Interrupt Service Routine).  

Enabling the ISR to interact with the RTOS   

  

An ISR will typically interact with an RTOS by making a system call such as a semaphore 

post. To ensure the ISR function can complete and exit before any context switch to a task is 

made, the RTOS interrupt dispatcher must disable preemption before calling the ISR function. 

Once the ISR function completes, preemption is re-enabled and the application will context 

switch to the highest priority thread that is ready to run. If there is no need for an ISR to make 

an RTOS system call, the disable/enable kernel preemption operations would again add 

overhead. It is logical to handle such an ISR outside of the RTOS.  

Context switching  

  
  

When an ISR defers processing to an RTOS task or other thread, a context switch needs to 

occur for the task to run. Context switching will still typically be the largest part of anyRTOS 

related interrupt processing overhead.  

  

Embedded Software Testing  

Embedded Software Testing is testing of embedded systems. Embedded software testing is 

similar to other testing types. The embedded software is tested for their performance, 

consistency and validated as per the requirements of the client of the software development 

team.  

Embedded Software testing checks and ensure the concerned software is of good quality and 

complies with all the requirements it should meet. Embedded software testing is an excellent 

approach to guarantee security in critical applications like medical equipment, railways, 

aviation, vehicle industry, etc. Strict and careful testing is crucial to grant software certification.  



How to perform Embedded Software Testing  

In general, you test for four reasons:  

• To find bugs in software  

• Helps to reduce risk to both users and the company  

• Cut down development and maintenance costs  

• To improve performance  

In Embedded Testing, the following activities are performed:  

1. The software is provided with some inputs.  

2. A Piece of the software is executed.  
3. The software state is observed, and the outputs are checked for expected properties like 

whether the output matches the expected outcome, conformance to the requirements and 

absence of system crashes.  

Embedded Software Testing Types  

Fundamentally, there are five levels of testing that can be applied to embedded software  

Software Unit Testing  

The unit module is either a function or class. Unit Testing is performed by the development 

team, primarily the developer and is usually carried out in a peer-review model. Based on the 

specification of the module test cases are developed.  

Integration Testing  

Integration testing can be classified into two segments:  

1. Software integration testing  

2. Software/hardware integration testing.  

In the end, the interaction of the hardware domain and software components is tested. This can 

incorporate examining the interaction between built-in peripheral devices and software.  



Embedded software development has a unique characteristic which focuses on the actual 

environment, in which the software is run, is generally created in parallel with the software. 

This causes inconvenience for testing since comprehensive testing cannot be performed in a 

simulated condition.  

System Unit Testing  

Now the module to be tested is a full framework that consists of complete software code 

additionally all real-time operating system (RTOS) and platform-related pieces such as 

interrupts, tasking mechanisms, communications and so on. The Point of Control protocol is 

not anymore a call to a function or a method invocation, but rather a message sent/got utilizing 

the RTOS message queues.  

System resources are observed to evaluate the system's ability to support embedded system 

execution. For this aspect, gray-box testing is the favored testing method. Depending on the 

organization, system unit testing is either the duty of the developer or a dedicated system 

integration team.  

System Integration Testing  

The module to be tested begins from a set of components within a single node. The Points of 

Control and Observations (PCOs) are a mix of network related communication protocols and 

RTOS, such as network messages and RTOS events. Additionally to a component, a Virtual 

Tester can likewise play the role of a node.  

System Validation Testing  

The module to be tested is a subsystem with a complete implementation or the complete 

embedded system. The objective of this final test is to meet external entity functional 

requirements.   
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