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MODULE IV: GENETIC ALGORITHMS  
  
GENETIC ALGORITHMS - FUNDAMENTALS  

 

This section introduces the basic terminology required to understand GAs. Also, a generic structure of GAs 
is presented in both pseudo-code and graphical forms. The reader is advised to properly understand all the 
concepts introduced in this section and keep them in mind when reading other sections of this tutorial as well.  

Basic Terminology  

Before beginning a discussion on Genetic Algorithms, it is essential to be familiar with some basic 
terminology which will be used throughout this tutorial.  

• Population − It is a subset of all the possible encoded solutions to the given problem. The population 
for a GA is analogous to the population for human beings except that instead of human beings, we 
have Candidate Solutions representing human beings.  

• Chromosomes − A chromosome is one such solution to the given problem.  
• Gene − A gene is one element position of a chromosome.  
• Allele − It is the value a gene takes for a particular chromosome.  

  

• Genotype − Genotype is the population in the computation space. In the computation space, the 
solutions are represented in a way which can be easily understood and manipulated using a computing 
system.  



• Phenotype − Phenotype is the population in the actual real world solution space in which solutions 
are represented in a way they are represented in real world situations.  

• Decoding and Encoding − For simple problems, the phenotype and genotype spaces are the same. 
However, in most of the cases, the phenotype and genotype spaces are different. Decoding is a process 
of transforming a solution from the genotype to the phenotype space, while encoding is a process of 
transforming from the phenotype to genotype space. Decoding should be fast as it is carried out 
repeatedly in a GA during the fitness value calculation.  

For example, consider the 0/1 Knapsack Problem. The Phenotype space consists of solutions which 
just contain the item numbers of the items to be picked.  

However, in the genotype space it can be represented as a binary string of length n where “n” is the 
number of items. A 0 at position x represents that xth item is picked while a 1 represents the reverse. 
This is a case where genotype and phenotype spaces are different.  

  

• Fitness Function − A fitness function simply defined is a function which takes the solution as input 
and produces the suitability of the solution as the output. In some cases, the fitness function and the 
objective function may be the same, while in others it might be different based on the problem.  

• Genetic Operators − These alter the genetic composition of the offspring. These include crossover, 

mutation, selection, etc. Basic Structure  

The basic structure of a GA is as follows −  

We start with an initial population which may be generated at random or seeded by other heuristics, select 
parents from this population for mating. Apply crossover and mutation operators on the parents to generate 
new off-springs. And finally these off-springs replace the existing individuals in the population and the 
process repeats. In this way genetic algorithms actually try to mimic the human evolution to some extent.  

Each of the following steps are covered as a separate chapter later in this tutorial.  



  

A generalized pseudo-code for a GA is explained in the following program −  

GA()  
   initialize population    find fitness of 
population  
     
   while (termination criteria is reached) do       parent selection  



 
  
The GA Algorithm  

A Genetic Algorithm can be implemented using the following outline algorithm  
  
1. Initialise a population of chromosomes  
2. Evaluate each chromosome (individual) in the population  

2.1. Create new chromosomes by mating chromosomes in the current population (using crossover and 
mutation)  

2.2. Delete members of the existing population to make way for the new members  
2.3. Evaluate the new members and insert them into the population  

3. Repeat stage 2 until some termination condition is reached (normally based on time or number of 
populations produced)  

4. Return the best chromosome as the solution.  
  
This is the basic GA algorithm. As we shall see below there are many parameters that we can use to affect 
this basic algorithm.  

  

One of the most important decisions to make while implementing a genetic algorithm is deciding the 
representation that we will use to represent our solutions. It has been observed that improper representation 
can lead to poor performance of the GA.  

Therefore, choosing a proper representation, having a proper definition of the mappings between the 
phenotype and genotype spaces is essential for the success of a GA.  

In this section, we present some of the most commonly used representations for genetic algorithms. However, 
representation is highly problem specific and the reader might find that another representation or a mix of the 
representations mentioned here might suit his/her problem better.  

Binary Representation  

This is one of the simplest and most widely used representation in GAs. In this type of representation the 
genotype consists of bit strings.  

For some problems when the solution space consists of Boolean decision variables – yes or no, the binary 
representation is natural. Take for example the 0/1 Knapsack Problem. If there are n items, we can represent 
a solution by a binary string of n elements, where the xth element tells whether the item x is picked 11 or not 
00.  

 
 

 
 

 
 

 



  

For other problems, specifically those dealing with numbers, we can represent the numbers with their binary 
representation. The problem with this kind of encoding is that different bits have different significance and 
therefore mutation and crossover operators can have undesired consequences. This can be resolved to some 
extent by using Gray Coding, as a change in one bit does not have a massive effect on the solution.  

Real Valued Representation  

For problems where we want to define the genes using continuous rather than discrete variables, the real 
valued representation is the most natural. The precision of these real valued or floating point numbers is 
however limited to the computer.  

  

Integer Representation  

For discrete valued genes, we cannot always limit the solution space to binary ‘yes’ or ‘no’. For example, if 
we want to encode the four distances – North, South, East and West, we can encode them as {0,1,2,3}. In 
such cases, integer representation is desirable.  

  

Permutation Representation  

In many problems, the solution is represented by an order of elements. In such cases permutation 
representation is the most suited.  

A classic example of this representation is the travelling salesman problem TSPTSP. In this the salesman has 
to take a tour of all the cities, visiting each city exactly once and come back to the starting city. The total 
distance of the tour has to be minimized. The solution to this TSP is naturally an ordering or permutation of 
all the cities and therefore using a permutation representation makes sense for this problem.  

  
  
  
  
GENETIC ALGORITHMS - POPULATION  



 

Population is a subset of solutions in the current generation. It can also be defined as a set of chromosomes. 
There are several things to be kept in mind when dealing with GA population −  

• The diversity of the population should be maintained otherwise it might lead to premature 
convergence.  

• The population size should not be kept very large as it can cause a GA to slow down, while a smaller 
population might not be enough for a good mating pool. Therefore, an optimal population size needs 
to be decided by trial and error.  

The population is usually defined as a two dimensional array of – size population, size x, chromosome size.  

Population Initialization  

There are two primary methods to initialize a population in a GA. They are −  

• Random Initialization − Populate the initial population with completely random solutions.  
• Heuristic initialization − Populate the initial population using a known heuristic for the problem.  

It has been observed that the entire population should not be initialized using a heuristic, as it can result in the 
population having similar solutions and very little diversity. It has been experimentally observed that the 
random solutions are the ones to drive the population to optimality. Therefore, with heuristic initialization, 
we just seed the population with a couple of good solutions, filling up the rest with random solutions rather 
than filling the entire population with heuristic based solutions.  

It has also been observed that heuristic initialization in some cases, only effects the initial fitness of the 
population, but in the end, it is the diversity of the solutions which lead to optimality.  

Population Models  

There are two population models widely in use −  

Steady State  

In steady state GA, we generate one or two off-springs in each iteration and they replace one or two individuals 
from the population. A steady state GA is also known as Incremental GA.  

Generational  

In a generational model, we generate ‘n’ off-springs, where n is the population size, and the entire population 
is replaced by the new one at the end of the iteration.  

GENETIC ALGORITHMS - FITNESS FUNCTION  

 

The fitness function simply defined is a function which takes a candidate solution to the problem as input and 
produces as output how “fit” our how “good” the solution is with respect to the problem in consideration.  

Calculation of fitness value is done repeatedly in a GA and therefore it should be sufficiently fast. A slow 
computation of the fitness value can adversely affect a GA and make it exceptionally slow.  



In most cases the fitness function and the objective function are the same as the objective is to either maximize 
or minimize the given objective function. However, for more complex problems with multiple objectives and 
constraints, an Algorithm Designer might choose to have a different fitness function.  

A fitness function should possess the following characteristics −  

• The fitness function should be sufficiently fast to compute.  
• It must quantitatively measure how fit a given solution is or how fit individuals can be produced from 

the given solution.  

In some cases, calculating the fitness function directly might not be possible due to the inherent complexities 
of the problem at hand. In such cases, we do fitness approximation to suit our needs.  

The following image shows the fitness calculation for a solution of the 0/1 Knapsack. It is a simple fitness 
function which just sums the profit values of the items being picked whichhavea1whichhavea1, scanning the 
elements from left to right till the knapsack is full.  

  
GENETIC ALGORITHMS - PARENT SELECTION  

 

Parent Selection is the process of selecting parents which mate and recombine to create off-springs for the 
next generation. Parent selection is very crucial to the convergence rate of the GA as good parents drive 
individuals to a better and fitter solutions.  

However, care should be taken to prevent one extremely fit solution from taking over the entire population in 
a few generations, as this leads to the solutions being close to one another in the solution space thereby leading 



to a loss of diversity. Maintaining good diversity in the population is extremely crucial for the success of a 
GA. This taking up of the entire population by one extremely fit solution is known as premature convergence 
and is an undesirable condition in a GA.  

Fitness Proportionate Selection  

Fitness Proportionate Selection is one of the most popular ways of parent selection. In this every individual 
can become a parent with a probability which is proportional to its fitness. Therefore, fitter individuals have 
a higher chance of mating and propagating their features to the next generation. Therefore, such a selection 
strategy applies a selection pressure to the more fit individuals in the population, evolving better individuals 
over time.  

Consider a circular wheel. The wheel is divided into n pies, where n is the number of individuals in the 
population. Each individual gets a portion of the circle which is proportional to its fitness value.  

Two implementations of fitness proportionate selection are possible −  

Roulette Wheel Selection  

In a roulette wheel selection, the circular wheel is divided as described before. A fixed point is chosen on the 
wheel circumference as shown and the wheel is rotated. The region of the wheel which comes in front of the 
fixed point is chosen as the parent. For the second parent, the same process is repeated.  

  

It is clear that a fitter individual has a greater pie on the wheel and therefore a greater chance of landing in 
front of the fixed point when the wheel is rotated. Therefore, the probability of choosing an individual depends 
directly on its fitness.  

Implementation wise, we use the following steps −  

• Calculate S = the sum of a finesses.  
• Generate a random number between 0 and S.  
• Starting from the top of the population, keep adding the finesses to the partial sum P, till P<S.  
• The individual for which P exceeds S is the chosen individual.  



Stochastic Universal Sampling SUSSUS  

Stochastic Universal Sampling is quite similar to Roulette wheel selection, however instead of having just one 
fixed point, we have multiple fixed points as shown in the following image. Therefore, all the parents are 
chosen in just one spin of the wheel. Also, such a setup encourages the highly fit individuals to be chosen at 
least once.  

  

It is to be noted that fitness proportionate selection methods don’t work for cases where the fitness can take a 
negative value.  

Tournament Selection  

In K-Way tournament selection, we select K individuals from the population at random and select the best out 
of these to become a parent. The same process is repeated for selecting the next parent. Tournament Selection 
is also extremely popular in literature as it can even work with negative fitness values.  

  



Rank Selection  

Rank Selection also works with negative fitness values and is mostly used when the individuals in the 
population have very close fitness values this happens usually at the end of the run. This leads to each 
individual having an almost equal share of the pie like incase of fitness proportionate selection as shown in 
the following image and hence each individual no matter how fit relative to each other has an approximately 
same probability of getting selected as a parent. This in turn leads to a loss in the selection pressure towards 
fitter individuals, making the GA to make poor parent selections in such situations.  

  

In this, we remove the concept of a fitness value while selecting a parent. However, every individual in the 
population is ranked according to their fitness. The selection of the parents depends on the rank of each 
individual and not the fitness. The higher ranked individuals are preferred more than the lower ranked ones.  

Chromosome  Fitness Value  

 

Rank  

 

A  8.1  

 

1  

B  8.0  

 

4  



C  8.05  2  

D  7.95  6  

E  8.02  3  

F  7.99  5  

Random Selection  

In this strategy we randomly select parents from the existing population. There is no selection pressure 
towards fitter individuals and therefore this strategy is usually avoided.  

GENETIC ALGORITHMS - CROSSOVER  

 

In this chapter, we will discuss about what a Crossover Operator is along with its other modules, their uses 
and benefits.  

Introduction to Crossover  

The crossover operator is analogous to reproduction and biological crossover. In this more than one parent is 
selected and one or more off-springs are produced using the genetic material of the parents. Crossover is 
usually applied in a GA with a high probability – pc .  

Crossover Operators  

In this section we will discuss some of the most popularly used crossover operators. It is to be noted that these 
crossover operators are very generic and the GA Designer might choose to implement a problemspecific 
crossover operator as well.  

One Point Crossover  

In this one-point crossover, a random crossover point is selected and the tails of its two parents are swapped 
to get new off-springs.  



  

Multi Point Crossover  

Multi point crossover is a generalization of the one-point crossover wherein alternating segments are swapped 
to get new off-springs.  

  

Uniform Crossover  

In a uniform crossover, we don’t divide the chromosome into segments, rather we treat each gene separately. 
In this, we essentially flip a coin for each chromosome to decide whether or not it’ll be included in the off-
spring. We can also bias the coin to one parent, to have more genetic material in the child from that parent.  

  

Whole Arithmetic Recombination  

This is commonly used for integer representations and works by taking the weighted average of the two 
parents by using the following formulae −  

• Child1 = α.x + 1−α1−α.y  
• Child2 = α.x + 1−α1−α.y  

Obviously, if α = 0.5, then both the children will be identical as shown in the following image.  

  



Davis’ Order Crossover OX1OX1  

OX1 is used for permutation based crossovers with the intention of transmitting information about relative 
ordering to the off-springs. It works as follows −  

• Create two random crossover points in the parent and copy the segment between them from the first 
parent to the first offspring.  

• Now, starting from the second crossover point in the second parent, copy the remaining unused 
numbers from the second parent to the first child, wrapping around the list.  

• Repeat for the second child with the parent’s role reversed.  

  

There exist a lot of other crossovers like Partially Mapped Crossover PMXPMX, Order based crossover 
OX2OX2, Shuffle Crossover, Ring Crossover, etc.  

GENETIC ALGORITHMS - MUTATION  

 

Introduction to Mutation  

In simple terms, mutation may be defined as a small random tweak in the chromosome, to get a new solution. 
It is used to maintain and introduce diversity in the genetic population and is usually applied with a low 
probability – pm. If the probability is very high, the GA gets reduced to a random search.  

Mutation is the part of the GA which is related to the “exploration” of the search space. It has been observed 
that mutation is essential to the convergence of the GA while crossover is not.  

Mutation Operators  

In this section, we describe some of the most commonly used mutation operators. Like the crossover operators, 
this is not an exhaustive list and the GA designer might find a combination of these approaches or a problem-
specific mutation operator more useful.  

Bit Flip Mutation  

In this bit flip mutation, we select one or more random bits and flip them. This is used for binary encoded 
GAs.  

  



Random Resetting  

Random Resetting is an extension of the bit flip for the integer representation. In this, a random value from 
the set of permissible values is assigned to a randomly chosen gene.  

Swap Mutation  

In swap mutation, we select two positions on the chromosome at random, and interchange the values. This is 
common in permutation based encodings.  

  

Scramble Mutation  

Scramble mutation is also popular with permutation representations. In this, from the entire chromosome, a 
subset of genes is chosen and their values are scrambled or shuffled randomly.  

  

Inversion Mutation  

In inversion mutation, we select a subset of genes like in scramble mutation, but instead of shuffling the 
subset, we merely invert the entire string in the subset.  

  
GENETIC ALGORITHMS - SURVIVOR SELECTION  

 

The Survivor Selection Policy determines which individuals are to be kicked out and which are to be kept in 
the next generation. It is crucial as it should ensure that the fitter individuals are not kicked out of the 
population, while at the same time diversity should be maintained in the population.  

Some GAs employ Elitism. In simple terms, it means the current fittest member of the population is always 
propagated to the next generation. Therefore, under no circumstance can the fittest member of the current 
population be replaced.  

The easiest policy is to kick random members out of the population, but such an approach frequently has 
convergence issues, therefore the following strategies are widely used.  

Age Based Selection  

In Age-Based Selection, we don’t have a notion of a fitness. It is based on the premise that each individual is 
allowed in the population for a finite generation where it is allowed to reproduce, after that, it is kicked out of 
the population no matter how good its fitness is.  

For instance, in the following example, the age is the number of generations for which the individual has been 
in the population. The oldest members of the population i.e. P4 and P7 are kicked out of the population and 
the ages of the rest of the members are incremented by one.  



  

Fitness Based Selection  

In this fitness based selection, the children tend to replace the least fit individuals in the population. The 
selection of the least fit individuals may be done using a variation of any of the selection policies described 
before – tournament selection, fitness proportionate selection, etc.  

For example, in the following image, the children replace the least fit individuals P1 and P10 of the population. 
It is to be noted that since P1 and P9 have the same fitness value, the decision to remove which individual 
from the population is arbitrary.  

  
GENETIC ALGORITHMS - TERMINATION CONDITION  

 

The termination condition of a Genetic Algorithm is important in determining when a GA run will end. It has 
been observed that initially, the GA progresses very fast with better solutions coming in every few iterations, 
but this tends to saturate in the later stages where the improvements are very small. We usually want a 
termination condition such that our solution is close to the optimal, at the end of the run.  



Usually, we keep one of the following termination conditions −  

• When there has been no improvement in the population for X iterations.  

• When we reach an absolute number of generations.  

• When the objective function value has reached a certain pre-defined value.  

For example, in a genetic algorithm we keep a counter which keeps track of the generations for which there 
has been no improvement in the population. Initially, we set this counter to zero. Each time we don’t generate 
off-springs which are better than the individuals in the population, we increment the counter.  

However, if the fitness any of the off-springs is better, then we reset the counter to zero. The algorithm 
terminates when the counter reaches a predetermined value.  

Like other parameters of a GA, the termination condition is also highly problem specific and the GA designer 
should try out various options to see what suits his particular problem the best.  

  

  

  

  
  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



  

Module V : Other Soft Computing Techniques  

Ant Colony Optimization (ACO)  

Ant Colony Optimization (ACO) studies artificial systems that take inspiration from the behavior of real ant 
colonies and which are used to solve discrete optimization problems.” First introduced by Marco Dorigo in 
1992. Originally applied to Traveling Salesman Problem. Natural behavior of ants have inspired scientists to 
mimic insect operational methods to solve real-life complex optimization problems. By observing ant 
behavior, scientists have begun to understand their means of communication. Ant-based behavioral patterns 
to address combinatorial problems - first proposed by Marco Dorigo.  

Ants secrete pheromone while traveling from the nest to food, and vice versa in order to communicate with 
one another to find the shortest path  

  
  

 
  
  

 

Ants are forced to decide whether they should go left or right, and the choice that is made is a random decision. 
Pheromone accumulation is faster on the shorter path. The difference in pheromone content between the two 
paths over time makes the ants choose the shorter path.  

The more ants follow a trail, the more attractive that trail becomes for being followed. Different optimization 
problems have been explored using a simulation of this real ant behavior   



  
  

Fig.1 ACO Algorithm  
  
  



ACO Algorithm   

1. Randomly place ants at the cities  

2. For each ant:  

3. Choose a not yet visited city  until a tour is completed  

4. optimize the tour  

5. Update pheromone  

6. Evaporate Pheromone  

7. Update pheromone  

8. Evaporate Pheromone  
  

  
Advantages of the Ant Colony Optimization  
 1.Inherent parallelism  
 2.Positive Feedback accounts for rapid discovery of good solutions  
 3. Efficient for Traveling Salesman Problem and similar problems  
 4.Can be used in dynamic applications (adapts to changes such as new distances, etc)  
  
Disadvantages of the Ant Colony Optimization  
 1.Theoretical analysis is difficult  
 2.Sequences of random decisions (not independent)  
 3.Probability distribution changes by iteration  
 4.Research is experimental rather than theoretical  
 5.Time to convergence uncertain (but convergence is guaranteed!)  
  

  

  

  

  

  

  

  

  
  

  

  

  

  

  



  

Particle Swarm Optimization (PSO)  

Particle Swarm Optimization (PSO) is a technique used to explore the search space of a given problem to find 
the settings or parameters required to maximize a particular objective. This technique, first described by James 
Kennedy and Russell C. Eberhart in 1995 [1], originates from two separate concepts: the idea of swarm 
intelligence based off the observation of swarming habits by certain kinds of animals (such as birds and fish); 
and the field of evolutionary computation.  

This short tutorial first discusses optimization in general terms, then describes the basics of the particle swarm 
optimization algorithm.   



  

Fig.1 PSO Algorithm  
  
  
  
The PSO algorithm works by simultaneously maintaining several candidate solutions in the search space. 
During each iteration of the algorithm, each candidate solution is evaluated by the objective function being 
optimized, determining the fitness of that solution. Each candidate solution can be thought of as a particle 
“flying” through the fitness landscape finding the maximum or minimum of the objective function.   
Initially, the PSO algorithm chooses candidate solutions randomly within the search space. Figure 2 shows 
the initial state of a four-particle PSO algorithm seeking the global maximum in a one-dimensional search 
space. The search space is composed of all the possible solutions along the x-axis; the curve denotes the 
objective function. It should be noted that the PSO algorithm has no knowledge of the underlying objective 
function, and thus has no way of knowing if any of the candidate solutions are near to or far away from a local 



or global maximum. The PSO algorithm simply uses the objective function to evaluate its candidate solutions, 
and operates upon the resultant fitness values.  
  

  
  

Fig.2 Initial PSO state  
  
  

Each particle maintains its position, composed of the candidate solution and its evaluated fitness, and its 
velocity. Additionally, it remembers the best fitness value it has achieved thus far during the operation of the 
algorithm, referred to as the individual best fitness, and the candidate solution that achieved this fitness, 
referred to as the individual best position or individual best candidate solution. Finally, the PSO algorithm 
maintains the best fitness value achieved among all particles in the swarm, called the global best fitness, and 
the candidate solution that achieved this fitness, called the global best position or global best candidate 
solution.  
  
The PSO algorithm consists of just three steps, which are repeated until some stopping condition is met:  
  
1. Evaluate the fitness of each particle  
2. Update individual and global best fitness and positions  
3. Update velocity and position of each particle  
  
The first two steps are fairly trivial. Fitness evaluation is conducted by supplying the candidate solution to 
the objective function. Individual and global best fitness and positions are updated by comparing the newly 
evaluated fitness against the previous individual and global best fitness, and replacing the best fitness and 
positions as necessary.  
  
Advantages of the basic particle swarm optimization algorithm:  
(1)PSO is based on the intelligence. It can be applied into both scientific research and engineering use.  
(2)PSO have no overlapping and mutation calculation. The search can be carried out by the speed of the 
particle. During the development of several generations, only the most optimist particle can transmit 
information onto the other particles, and the speed of the researching is very fast.  
(3)The calculation in PSO is very simple. Compared with the other developing calculations, it occupies the 
bigger optimization ability and it can be completed easily.  
(4) PSO adopts the real number code, and it is decided directly by the solution. The number of the dimension 
is equal to the constant of the solution.  



  
Disadvantages of the basic particle swarm optimization algorithm:  
(1)The method easily suffers from the partial optimism, which causes the less exact at the regulation of its 
speed and the direction.  
(2)The method cannot work out the problems of scattering and optimization.  
(3)The method cannot work out the problems of non-coordinate system, such as the solution to the energy 
field and the moving rules of the particles in the energy field  
  
  
APPLICATIONS OF ACO AND PSO  
  
Ant colony optimization algorithms have been applied to many combinatorial optimization problems, ranging 
from quadratic assignment to fold protein or routing vehicles and a lot of derived methods have been adapted 
to dynamic problems in real variables, stochastic problems, multi-targets and parallel implementations. It has 
also been used to produce near-optimal solutions to the travelling salesman problem. They have an advantage 
over simulated annealing and genetic algorithm approaches of similar problems when the graph may change 
dynamically; the ant colony algorithm can be run continuously and adapt to changes in real time. This is of 
interest in network routing and urban transportation systems.  
  
The first practical application of PSO was in the field of neural network training and was reported together 
with the algorithm itself (Kennedy and Eberhart 1995). Many more areas of application have been explored 
ever since, including telecommunications, control, data mining, design, combinatorial optimization, power 
systems, signal processing, and many others. To date, there are hundreds of publications reporting applications 
of particle swarm optimization algorithms. For a review, see (Poli 2008). Although PSO has been used mainly 
to solve unconstrained, single-objective optimization.  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



Comparison of GA, PSO and ACO  

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
Sample Questions  
  

1. What is meant by servival of the fittest? Explain.  

2. What is genotype and phenotype? Explain.  



3. Write down the steps of Genetic Algorithm.  

4. Write down the flowchart of Genetic Algorithm.  

5. What is fitness function?  

6. Explain the term Selection, Crossover and Mutation.  

7. Write down the steps/flowchart of ACO.  

8. Write down the steps/flowchart of PSO.  

9. Write down the advatages and disadvantages of ACO.  

10. Write down the advatages and disadvantages of PSO.  

11. Write down the application of ACO.  

12. Write down the application of PSO.  
  

  
  

  


