
 Microprocessor and

Microcontroller

(EE 601)

Online Courseware (OCW)

B.TECH (3rd YEAR – 6th SEM)

Prepared by: Dr. Debasree saha

Department of Electrical Engineering

Guru Nanak Institute of Technology
(Affiliated to MAKUT, West Bengal , Approved by AICTE - Accredited by NAAC – ‘A+’ Grade)

157/F Nilgunj road, Panihati, Kolkata-700114, West Bengal

https://gnit.ac.in/
https://gnit.ac.in/

Contacts: 3L Total Contact Hours: 36

Credits: 3 (50 minutes/lecture)

Pre requisites:

Knowledge in Digital Electronics.

Course Outcomes (COs):

On completion of the course students will be

CO1. Able to correlate the architecture, instructions, timing diagrams, addressing
modes, memory interfacing, interrupts, data communication of 8085.

CO2. Able to interpret the 8086 microprocessor-Architecture, Pin details, memory
segmentation, addressing modes, basic instructions, interrupts.

CO3. Recognize 8051 micro controller hardware, input/output pins, ports, external
memory, counters and timers, instruction set, addressing modes, serial data i/o,
interrupts.

CO4. Apply instructions for assembly language programs of 8085, 8086 and 8051.

CO5. Design peripheral interfacing model using IC 8255, 8253, 8251 with IC 8085,
8086 and 8051.

Microprocessor and Microcontroller

Code: EE601

Course Content

Module 1: 8085 Microprocessor [6]

Introduction to Microcomputer based system, Evolution of Microprocessor and

microcontrollers and their advantages and disadvantages, Architecture of 8085

Microprocessor, Address / Data Bus multiplexing and demultiplexing, Status and Control

signal generation, Instruction set of 8085 Microprocessor, Classification of instructions,

addressing modes, timing diagram of the instructions, Memory interfacing , IO

interfacing, ADC / DAC interfacing, Stack and Subroutine, Delay Calculation, Interrupts

of 8085 processor, classification of interrupts, Serial and parallel data transfer – Basic

concept of serial I/O, DMA, Asynchronous and synchronous serial transmission using

SID and SOD pins of 8085.

Module 2: Assembly language programming with 8085 [2]

Addition, Subtraction, Multiplication, Block Transfer, ascending order, descending order,

Finding largest & smallest number, Look-up table etc. Programming using interrupts

(programming using INTR is not required).

Module 3: 8086 Microprocessor [8]

8086 Architecture, Pin details, memory segmentation, addressing modes, Familiarization

of basic Instructions, Interrupts & Direct Memory Access, Memory interfacing, ADC /

DAC interfacing.

Module 4: Assembly language programming with 8086 [3]

Addition, Subtraction, Multiplication, Block, Transfer, ascending order, descending order,

Finding largest & smallest number etc.

Module 5: 8051 Microcontroller [7]

8051 architecture, hardware, input/output pins, ports, internal and external memory,

counters and timers, instruction set, addressing modes, serial data i/o, interrupts, Memory

interfacing, ADC / DAC interfacing.

Module 6: Assembly language Programming using 8051 [4]

Moving data: External data moves, code memory read only data moves, PUSH and POP

opcodes, data exchanges; Logical operations: Byte-level, bit-level, rotate and swap

operations; Arithmetic operations: Flags, incrementing and decrementing, addition,

subtraction, multiplication and division, decimal arithmetic; Jump and call instructions:

Jump and call program range, jumps, calls and subroutines, interrupts and returns.

Module 7: Support IC chips [6]

8255, 8253 and 8251: Block Diagram, Pin Details, Modes of operation, control word(s)

format. Interfacing of support IC chips with 8085, 8086 and 8051.

Text Books:

1. Microprocessor architecture, programming and application with 8085 – R.

Gaonkar, Penram International

2. The 8051 microcontroller - K. Ayala, Thomson

3. Microprocessors & interfacing – D. V. Hall, Tata McGraw-hill

4. Ray & Bhurchandi, Advanced Microprocessors & Peripherals, TMH

5. The 8051 microcontroller and Embedded systems - Mazidi, Mazidi and

McKinley, Pearson

6. An Introduction to Microprocessor and Applications –Krishna Kant,Macmillan

Reference Books:

1. Microprocessors and microcontrollers - N. Senthil Kumar, M. Saravanan and

Jeevananthan, Oxford university press

2. 8086 Microprocessor –K Ayala, Cengage learning

3. The 8051 microcontrollers – Uma Rao and Andhe Pallavi, Pearson

Lecture-I

Module 1: 8085 Microprocessor

Content:

➢ Introduction to Microcomputer based system

➢ Evolution of Microprocessor and microcontrollers

➢ Advantages and disadvantages of Microprocessor and

Microcontrollers

Introduction to Microcomputer based system

The microprocessor is one of the most important components of a digital computer. It acts
as the brain of a computer system. Computer are of two types: digital computer and
analog computers. A digital computer makes processing of numbers. An analog computer
process analog signals. An analog signal is a continuous signal. Now-a-days computers
which are commonly used are digital computers. Analog computers have specific
applications. They are used for some specific scientific and engineering purposes. Earlier,
they were used to study, analyze and simulate scientific and engineering systems. Today
these works are done by digital computers.

computers are the most powerful tool man has ever created. A digital computer
is a programmable machine. Its main components are: CPU, memory, input device and
output device.

Schematic diagram of a digital computer

Schematic diagram of a microcomputer

• A digital computer was developed for complex scientific and
engineering calculations and it was a programmable machine.
Hence, a computer was defined as a “programmable computing
machine”. Today, besides computation work computers are
used for a number of noncomputational work such as
automatic control of industrial equipment, to control process,
to measure physical and electrical quantities, to process text,
graphics and image; to store information, to display
information, to transmit information from one place to another,
to receive information and so on. In the light of such
developments, a computer now can be defined as
programmable machine which can make calculations,
manipulate, measure, store, display information; control
process, equipment, machine and appliances, transmit and
receive information and so on.

Introduction to Microcomputer based system

Evolution of Microprocessor

INTEL 4004
Year of Introduction – 1972

• 4-bit microprocessor.

• 4KB main memory

• 45 instructions

• P-MOS technology

• was first programmable device which was used in calculators.

Advantages and disadvantages of
Microprocessor and Microcontrollers

• There are some advantages of microprocessor are given below,
• Microprocessor are general purpose electronic processing devices

which can be programmed to execute a number of tasks.
• Speed of Microprocessor is measured in hertz. For instance, a

microprocessor with 3 GHz, shortly GHz is capable of performing 3
billion tasks per second.

• Microprocessor is that which can quickly move data between the
various memory locations.

• There are some disadvantages of microprocessor are given below,
• The microprocessor has a limitation on the size of data.
• Most of the microprocessor does not support floating point

operations.
• The main disadvantage is it’s over heating physically.
• It should not contact with the other external devices.
• The microprocessor does not have any internal peripheral like ROM,

RAM and other I/O devices.

http://www.polytechnichub.com/advantages-disadvantages-microprocessor/
http://www.polytechnichub.com/what-is-a-microprocessor/

Lecture-III

Module 1: 8085 Microprocessor

Content: Pin diagram of 8085 Microprocessor

Pin Diagram
of 8085

Functions of various Pins of 8085
➢ A8-A15 Higher Order Address bus:

These are o/p tri-state (a state of high impedance) signals used as higher
order 8 bits of 16 bit address.
These signals are unidirectional and are given from 8085 to select memory or
I/O devices.

➢ AD0-AD7 Multiplexed Address/Data bus:
These are I/O tri-state signals, having 2 sets of signals. They are address and
data.
The lower 8 bit of 16 bit address is multiplexed/time shared with data bus.

➢ Address latch Enable(ALE):
It is an output signal used to give information of AD0-AD7 contents.
It is a positive going pulse generated when a new operation is started by
microprocessor.
When pulse goes high it indicates that AD0-AD7 lines are address.
When it is low it indicates that the contents are data.

➢ IO/M(bar):
This is an output status signal used to give info of operation to be performed
with memory or I/O devices.
When = 0, the microprocessor is performing memory related operation.
When = 1, the microprocessor is performing I/O device related operation.
This signal separates memory and I/O devices.

➢ Status signals(S0 and S1):
These are output status signals used to give information of operation performed by
microprocessor.
The S0 and S1 lines specify 4 different conditions of 8085 machine cycles.

➢ Read: This is an active low output control signal used to read data from memory or
an I/O device.

➢ Write: This is an active low output signal used to write data to memory or an I/O
device.

➢ Ready: This is an active high input control signal. It is used by microprocessor to
detect whether a peripheral has completed (or is Ready for) the data transfer or not.
The main function of this pin is to synchronize slower peripheral to faster
microprocessor.
If ready pin is high the microprocessor will complete the operation and proceeds for
the next operation. If ready pin is low the microprocessor will wait until it goes high.

• Trap:
This is an active high, level and edge triggered, non-maskable higher priority
interrupt.
When TRAP is active, the program counter of µp jumps automatically at address
0024.

RST 7.5,RST 6.5 and RST 5.5:
These are active high, edge (RST 7.5) or level (RST 6.5 and RST 5.5) triggered
maskable interrupts.
The priorities of these are TRAP, RST 7.5, RST 6.5, and RST 5.5.
When RST 7.5, RST 6.5 and RST 5.5 are active, the program counter jumps
automatically at address 003C, 0034, 002C respectively.

INTR and INTA(Bar):
INTR is an active high, level triggered general purpose interrupt.
When INTR is active µp generates an interrupt acknowledge signal.
If INTR is active, the Program Counter (PC) will be restricted from incrementing
and an will be issued.
During This cycle a RESTART or CALL instruction can be inserted to jump to the
interrupt Service routine.
The INTR is enabled and disabled by software. It is disabled by Reset and
immediately after an interrupt is accepted.

• HOLD:
HOLD indicates that another Master is requesting the use of the Address and Data
Buses.
The CPU, upon receiving the Hold request, will withdraw the use of buses as soon
as the completion of the current machine cycle. Internal processing can continue.
The processor can regain the buses only after the Hold is removed.
When the Hold is acknowledged, the Address, Data, RD, WR, and IO/M lines are
tri-stated.
HLDA:
HOLD ACKNOWLEDGE indicates that the CPU has received the Hold request and
that it will withdraw the buses in the next clock cycle.
HLDA goes low after the Hold Request is removed.
The CPU takes the buses one half clock cycles after HLDA goes Low.

Reset IN(Bar):
Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA
Flip-flops and makes address, data and control lines tri-stated.
The CPU is held in the reset condition as long as Reset is applied.
After reset status internal register and flag are unpredictable.
After reset microprocessor starts executing from instruction from 0000H onwards.

RESET OUT:
This is an active high output signal used to indicate CPU is being reset and can be used as
a system RESET. The signal is synchronized to the processor clock.
This signal is also used to reset the peripherals once the µP is reset.
It is an acknowledgement signal to RESET IN (bar).
Serial input data(SID):
This is an active high Serial input data line the data on this line is loaded into accumulator
bit 7 whenever a RIM instruction is executed.
Serial output data(SOD):
This is an active high Serial output data line.
The output SOD is set or reset as specified by the SIM instruction.
X1,X2:
Crystal or R/C network connections to set the internal clock generator X1 can also be an
external clock input instead of a crystal.
The input frequency is divided by 2 to give the internal operating frequency as shown in
fig.

• CLK OUT:
Clock Output for use as a system clock when a crystal or R/ C network is used as an
Input to the CPU.
Clock input to all other peripherals is provided through CLK OUT pin.
The period of CLK is twice the X1, X2 input period.

•
VCC and VSS:
+5 volt supply and Ground Reference.

A Microcomputer system

Lecture-IV

Module 1: 8085 Microprocessor

Content: Internal architecture of 8085 Microprocessor

Session objective:

Session outcome:

Internal architecture of 8085 microprocessor

8085 bus structure

Module 1: 8085 Microprocessor

Content: ADDRESSING MODES OF 8085

ADDRESSING MODES OF 8085

Every instruction of a program has to operate on a data.

The method of specifying the data to be operated by the
instruction is called

Addressing.

The 8085 has the following 5 different types of addressing.

1. Immediate Addressing

2. Direct Addressing

3. Register Addressing

4. Register Indirect Addressing

5. Implied Addressing

1. Immediate Addressing:
In immediate addressing mode, the data is specified in the instruction itself.
The data will be a part of the program instruction.

EX. MVI B, 3EH - Move the data 3EH given in the instruction to B register; LXI

SP, 2700H.

2. Direct Addressing:
In direct addressing mode, the address of the data is specified in the
instruction. The data will be in memory. In this addressing mode, the program
instructions and data can be stored in different memory.

EX. LDA 1050H - Load the data available in memory location 1050H in to

accumulator; SHLD 3000H

3. Register Addressing:
In register addressing mode, the instruction specifies the name of the
register in which the data is available.
EX. MOV A, B - Move the content of B register to A register; SPHL; ADD
C.

4. Register Indirect Addressing:
In register indirect addressing mode, the instruction specifies the
name of the register in which the address of the data is available. Here
the data will be in memory and the address will be in the register pair.
EX. MOV A, M - The memory data addressed by H L pair is moved to A
register.
LDAX B.

5. Implied Addressing:
In implied addressing mode, the instruction itself specifies the data to
be operated.

Opcode and Operand

• Instruction word size

One byte instruction

Two byte instruction

Three byte instruction

Module 1: 8085 Microprocessor

Content: INSTRUCTION SET OF INTEL 8085

INSTRUCTION SET OF INTEL 8085

An Instruction is a command given to the computer to perform a
specified operation on given data. The instruction set of a
microprocessor is the collection of the instructions that the
microprocessor is designed to execute. The programmer can
write a program in assembly language using these instructions.

These instructions have been classified into the following groups:

1. Data Transfer Group

2. Arithmetic Group

3. Logical Group

4. Branch Control Group

5. I/O and Machine Control Group

Data Transfer Group

• Instructions, which are used to transfer data from one register
to another register, from memory to register or register to
memory, come under this group. Examples are: MOV, MVI,
LXI, LDA, STA etc. When an instruction of data transfer group
is executed, data is transferred from the source to the
destination without altering the contents of the source. For
example, when MOV A, B is executed the content of the
register B is copied into the register A, and the content of
register B remains unaltered. Similarly, when LDA 2500 is
executed the content of the memory location 2500 is loaded
into the accumulator. But the content of the memory location
2500 remains unaltered.

Arithmetic Group
• The instructions of this group perform arithmetic operations

such as addition, subtraction; increment or decrement of the
content of a register or memory. Examples are: ADD, SUB, INR,
DAD etc.

• The Instructions under this group perform logical operation
such as AND, OR, compare, rotate etc. Examples are: ANA,
XRA, ORA, CMP, and RAL etc.

• This group includes the instructions for conditional and
unconditional jump, subroutine call and return, and restart.
Examples are: JMP, JC, JZ, CALL, CZ, RST etc.

Logical Group

Branch Control Group

I/O and Machine Control Group

• This group includes the instructions for input/output ports,
stack and machine control. Examples are: IN, OUT, PUSH, POP,
and HLT etc.

1. MOV r1, r2 (Move Data; Move the content of the one register to another).
[r1] <-- [r2]
2. MOV r, m (Move the content of memory register). r <-- [M]
3. MOV M, r. (Move the content of register to memory). M <-- [r]
4. MVI r, data. (Move immediate data to register). [r] <-- data.
5. MVI M, data. (Move immediate data to memory). M <-- data.
6. LXI rp, data 16. (Load register pair immediate). [rp] <-- data 16 bits, [rh]
<-- 8 LSBs of data.
7. LDA addr. (Load Accumulator direct). [A] <-- [addr].
8. STA addr. (Store accumulator direct). [addr] <-- [A].
9. LHLD addr. (Load H-L pair direct). [L] <-- [addr], [H] <-- [addr+1].
10. SHLD addr. (Store H-L pair direct) [addr] <-- [L], [addr+1] <-- [H].
11. LDAX rp. (LOAD accumulator indirect) [A] <-- [[rp]]
12. STAX rp. (Store accumulator indirect) [[rp]] <-- [A]. 13. XCHG. (Exchange the
contents of H-L with D-E pair) [H-L] <--> [D-E].

Data Transfer Group

2. Arithmetic Group

1. ADD r. (Add register to accumulator) [A] <-- [A] + [r].

2. ADD M. (Add memory to accumulator) [A] <-- [A] + [[H-L]].

3. ADC r. (Add register with carry to accumulator). [A] <-- [A] + [r] + [CS].

4. ADC M. (Add memory with carry to accumulator) [A] <-- [A] + [[H-L]]

[CS].

5. ADI data (Add immediate data to accumulator) [A] <-- [A] + data.

6. ACI data (Add with carry immediate data to accumulator). [A] <-- [A] +

data + [CS].

7. DAD rp. (Add register paid to H-L pair). [H-L] <-- [H-L] + [rp].

8. SUB r. (Subtract register from accumulator). [A] <-- [A] – [r].

9. SUB M. (Subtract memory from accumulator). [A] <-- [A] – [[H-L]].

10. SBB r. (Subtract register from accumulator with borrow). [A] <-- [A] – [r]

– [CS].

11. SBB M. (Subtract memory from accumulator with borrow). [A] <-- [A] – [[H-
L]] – [CS].

12. SUI data. (Subtract immediate data from accumulator) [A] <-- [A] – data.

13. SBI data. (Subtract immediate data from accumulator with borrow). [A] <--
[A] – data – [CS].

14. INR r (Increment register content) [r] <-- [r] +1.

15. INR M. (Increment memory content) [[H-L]] <-- [[H-L]] + 1.

16. DCR r. (Decrement register content). [r] <-- [r] – 1.

17. DCR M. (Decrement memory content) [[H-L]] <-- [[H-L]] – 1.

18. INX rp. (Increment register pair) [rp] <-- [rp] – 1.

19. DCX rp (Decrement register pair) [rp] <-- [rp] -1.

20. DAA (Decimal adjust accumulator)

DAA (Decimal adjust accumulator)
• The instruction DAA is used in the program after ADD, ADI,

ACI, ADC, etc instructions. After the execution of ADD, ADC,
etc instructions the result is in hexadecimal and it is placed in
the accumulator. The DAA instruction operates on this result
and gives the final result in the decimal system. It uses carry
and auxiliary carry for decimal adjustment. 6 is added to 4
LSBs of the content of the accumulator if their value lies in
between A and F or the AC flag is set to 1. Similarly, 6 is also
added to 4 MSBs of the content of the accumulator if their
value lies in between A and F or the CS flag is set to 1. All
status flags are affected. When DAA is used data should be in
decimal numbers

Module 1: 8085 Microprocessor

Content: INSTRUCTION SET OF INTEL 8085

INSTRUCTION SET OF INTEL 8085

An Instruction is a command given to the computer to perform a
specified operation on given data. The instruction set of a
microprocessor is the collection of the instructions that the
microprocessor is designed to execute. The programmer can
write a program in assembly language using these instructions.

These instructions have been classified into the following groups:

1. Data Transfer Group

2. Arithmetic Group

3. Logical Group

4. Branch Control Group

5. I/O and Machine Control Group

Logical Group
1. ANA r. (AND register with accumulator) [A] <-- [A] ^ [r].
2. ANA M. (AND memory with accumulator). [A] <-- [A] ^ [[H-L]].
3. ANI data. (AND immediate data with accumulator) [A] <-- [A] ^ data.
4. ORA r. (OR register with accumulator) [A] <-- [A] v [r].
5. ORA M. (OR memory with accumulator) [A] <-- [A] v [[H-L]]
6. ORI data. (OR immediate data with accumulator) [A] <-- [A] v data.
7. XRA r. (EXCLUSIVE – OR register with accumulator) [A] <-- [A] v [r]
8. XRA M. (EXCLUSIVE-OR memory with accumulator) [A] <-- [A] v
[[H-L]]
9. XRI data. (EXCLUSIVE-OR immediate data with accumulator) [A] <--
[A]
10. CMA. (Complement the accumulator) [A] <-- [A]
11. CMC. (Complement the carry status) [CS] <-- [CS]
12. STC. (Set carry status) [CS] <-- 1.
13. CMP r. (Compare register with accumulator) [A] – [r]
14. CMP M. (Compare memory with accumulator) [A] – [[H-L]]

15. CPI data. (Compare immediate data with accumulator) [A] –
data. The 2nd byte of the instruction is data, and it is subtracted
from the content of the accumulator. The status flags are set
according to the result of subtraction. But the result is discarded.
The content of the accumulator remains unchanged.

16. RLC (Rotate accumulator left) [An+1] <-- [An], [A0] <-- [A7],[CS]
<-- [A7].

The content of the accumulator is rotated left by one bit.

The seventh bit of the accumulator is moved to carry bit as well as
to the zero bit of the accumulator. Only CS flag is affected.

RRC. (Rotate accumulator right) [A7] <-- [A0], [CS] <-- [A0], [An]
<--[An+1].

The content of the accumulator is rotated right by one bit. The
zero bit of the accumulator is moved to the seventh bit as well as
to carry bit. Only CS flag is affected.

18. RAL. (Rotate accumulator left through carry) [An+1] <-- [An],
[CS] <-- [A7], [A0] <-- [CS].

19. RAR. (Rotate accumulator right through carry) [An] <--
[An+1], [CS] <-- [A0], [A7] <-- [CS]

4. Branch Group
1. JMP addr (label). (Unconditional jump: jump to the instruction specified
by the address). [PC] <-- Label.
2. Conditional Jump addr (label): After the execution of the conditional jump
instruction the program jumps to the instruction specified by the address
(label) if the specified condition is fulfilled. The program proceeds further
in the normal sequence if the specified condition is not fulfilled. If the
condition is true and program jumps to the specified label, the execution
of a conditional jump takes 3 machine cycles: 10 states. If condition is not
true, only 2 machine cycles; 7 states are required for the execution of the
instruction.
1. JZ addr (label). (Jump if the result is zero)
2. JNZ addr (label) (Jump if the result is not zero)
3. JC addr (label). (Jump if there is a carry)
4. JNC addr (label). (Jump if there is no carry)
5. JP addr (label). (Jump if the result is plus)
6. JM addr (label). (Jump if the result is minus)
7. JPE addr (label) (Jump if even parity)
8. JPO addr (label) (Jump if odd parity)

3. CALL addr (label) (Unconditional CALL: call the subroutine
identified by the operand)

CALL instruction is used to call a subroutine. Before the control is
transferred to the subroutine, the address of the next instruction
of the main program is saved in the stack. The content of the
stack pointer is decremented by two to indicate the new stack
top. Then the program jumps to subroutine starting at address
specified by the label.

4. RET (Return from subroutine)

5. RST n (Restart) Restart is a one-word CALL instruction. The
content of the program counter is saved in the stack. The
program jumps to the instruction starting at restart location.

5. Stack, I/O and Machine Control Group

1. IN port-address. (Input to accumulator from I/O port) [A] <-- [Port]
2. OUT port-address (Output from accumulator to I/O port) [Port] <-- [A]
3. PUSH rp (Push the content of register pair to stack)
4. PUSH PSW (PUSH Processor Status Word)
5. POP rp (Pop the content of register pair, which was saved, from the stack)
6. POP PSW (Pop Processor Status Word)
7. HLT (Halt)
8. XTHL (Exchange stack-top with H-L)
9. SPHL (Move the contents of H-L pair to stack pointer)
10. EI (Enable Interrupts)
11. DI (Disable Interrupts)
12. SIM (Set Interrupt Masks)
13. RIM (Read Interrupt Masks)
14. NOP (No Operation)

Module 1: 8085 Microprocessor

Content: Instruction cycle

Session objective:

Session outcome:

Instruction cycle

The timing and control unit generates timing signals for the execution of
instruction and control of peripheral devices. The timing used for the execution
of instructions and control of peripherals are different for different
microprocessors. The design and cost of a processor also depends on the timing
structure and register organization.

For the execution of an instruction a microprocessor fetches the instruction
from the memory and executes it. The time taken for the execution of an
instruction is called instruction cycle (IC).

An instruction cycle consists of a fetch cycle (FC) and an execute cycle (EC).

A fetch cycle is the time required for the fetch operation in which the machine
code of the instruction (opcode) is fetched from the memory. This time is a fixed
slot of time. An execute cycle is of variable width which depends on the
instruction to be executed.

The total time for the execution is given by IC = FC + EC

Fetch Operation
In fetch operation the microprocessor gets the 1st byte of the instruction,

which is operation code (opcode), from the memory. The program counter keeps the
track of address of the next instruction to be executed. In the beginning of the fetch
cycle the content of the program counter is sent to the memory. This takes one clock
cycle.

The memory first reads the opcode. This operation also takes one clock cycle.

Then the memory sends the opcode to the microprocessor, which takes one clock
period.

The total time for fetch operation is the time required for fetching an opcode from the
memory. This time is called fetch cycle. Having received the address from the
microprocessor the memory takes two clock cycles to respond as explained above. If
the memory is slow, it may take more time. In that case the microprocessor has to
wait for some time till it receives the opcode from the memory. The time for which the
microprocessor waits is called wait cycle. Most of the microprocessor have provision
for wait cycles to cope with slow memory.

Execute Operation
The opcode fetched from the memory
goes to the data register, DR
(data/address buffer in Intel 8085) and
then to instruction register, IR. From the
instruction register it goes to the
decoder circuitry is within the
microprocessor. After the instruction is
decoded, execution begins. If the
operand is in the general purpose
registers, execution is immediately
performed. The time taken in decoding
and the address of the data, some read
cycles are also necessary to receive the
data from the memory. These read cycle
are similar to opcode fetch cycle. The
fetch quantities in these cycles are
address or data. Figure (a) and Figure
(b) shows an instruction and fetch cycle
respectively

Machine Cycle

Machine cycles of 8085

The 8085 microprocessor has 5 (seven) basic

machine cycles. They are

✓Opcode fetch cycle (4T)

✓Memory read cycle (3 T)

✓Memory write cycle (3 T)

✓I/O read cycle (3 T)

✓I/O write cycle (3 T)

The time required by the microprocessor to complete an operation of
accessing memory or input/output devices is called machine cycle. One time
period of frequency of microprocessor is called t-state. A t-state is measured
from the falling edge of one clock pulse to the falling edge of the next clock
pulse.

Fetch cycle takes four t-states and execution cycle takes three t-states.

1.Opcode fetch machine cycle of 8085 :

➢ Each instruction of the processor has one byte opcode.

The opcodes are stored in memory. So, the processor executes the
opcode fetch machine cycle to fetch the opcode from memory.

Hence, every instruction starts with opcode fetch machine cycle.

The time taken by the processor to execute the opcode fetch cycle is
4T.

In this time, the first, 3 T-states are used for fetching the opcode from
memory and the remaining T-states are used for internal operations by
the processor.

2. Memory Read Machine Cycle of 8085:

• The memory read
machine cycle is
executed by the
processor to read a data
byte from memory.

• The processor takes 3T
states to execute this
cycle.

• The instructions which
have more than one byte
word size will use the
machine cycle after the
opcode fetch machine
cycle.

3. Memory Write Machine Cycle of 8085

• The memory write
machine cycle is
executed by the
processor to write a
data byte in a memory
location.

• The processor takes, 3T
states to execute this
machine cycle.

4. I/O Read Cycle of 8085

• The I/O Read cycle is
executed by the processor to
read a data byte from I/O
port or from the peripheral,
which is I/O, mapped in the
system.

•

• The processor takes 3T
states to execute this
machine cycle.

• The IN instruction uses this
machine cycle during the
execution.

Timing diagram for STA 526AH

• STA means Store Accumulator -The contents of the accumulator is stored
in the specified address (526A).
The opcode of the STA instruction is said to be 32H. It is fetched from the
memory 41FFH (see fig). - OF machine cycle
Then the lower order memory address is read (6A). - Memory Read
Machine Cycle
Read the higher order memory address (52).- Memory Read Machine
Cycle
The combination of both the addresses are considered and the content
from accumulator is written in 526A. - Memory Write Machine Cycle
Assume the memory address for the instruction and let the content of
accumulator is C7H. So, C7H from accumulator is now stored in 526A.

Timing diagram

for TA 526AH

3. Timing diagram for INR M

• Fetching the
Opcode 34H from
the memory
4105H. (OF cycle)

• Let the memory
address (M) be
4250H. (MR cycle -
To read Memory
address and data)

• Let the content of
that memory is
12H.

• Increment the
memory content
from 12H to 13H.
(MW machine
cycle)

Instruction Fetch operation

Figure 1

Lecture-XII

Module 1: 8085 Microprocessor

Content: Interrupts of INTEL 8085

Session objective:

Session outcome:

8085 interrupt structure and operation

Types of interrupt

Hardware interrupts in 8085

Interrupt structure of 8085

TRAP

INTR

Summary of hardware interrupts

Software interrupts in 8085

• Vector address of
software interrupts

Masking and unmasking of Interrupts

• Maskable interrupts are enabled or disabled under program
control. Three instructions for masking and unmasking of
interrupts.

1. EI 2.DI 3.SIM

Accumulator content for SIM

1

MODULE 3

LECTURE 1: ARCHITECTURE OF 8086

1. ARCHITECTURE OF 8086

Unlike microcontrollers, microprocessors do not have inbuilt memory. Mostly Princeton

architecture is used for microprocessors where data and program memory are combined in a

single memory interface. Since a microprocessor does not have any inbuilt peripheral, the circuit

is purely digital and the clock speed can be anywhere from a few MHZ to a few hundred MHZ

or even GHZ. This increased clock speed facilitates intensive computation that a microprocessor

is supposed to do.

We will discuss the basic architecture of Intel 8086 before discussing more advanced

microprocessor architectures.

Internal architecture of Intel 8086:

Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20-bit address bus. The

lower 16- bit address lines and 16-bit data lines are multiplexed (AD0-AD15). Since 20-bit

address lines are available, 8086 can access up to 2 20 or 1 Giga byte of physical memory.

The basic architecture of 8086 is shown below.

The internal architecture of Intel 8086 is divided into two units, viz., Bus Interface Unit

(BIU) and Execution Unit (EU).

Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides

the interface with external memory (ROM/RAM). As mentioned earlier, 8086 has a single

memory interface. To speed up the execution, 6-bytes of instruction are fetched in advance and

kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution

Unit (EU). Hence after the execution of an instruction, the next instruction is directly fetched

from the instruction queue without having to wait for the external memory to send the

instruction. This is called pipe-lining and is helpful for speeding up the overall execution

process.

8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment

address with a 16-bit offset address. There are four 16-bit segment registers, viz., the code

segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). These

segment registers hold the corresponding 16-bit segment addresses. A segment address is the

upper 16-bits of the starting address of that segment. The lower 4-bits of the starting address of a

segment is always zero. The offset address is held by another 16-bit register. The physical 20-bit

address is calculated by shifting the segment address 4-bit left and then adding that to the offset

address.

2

For Example:

Figure 3.1: 8086 Architecture

Code segment Register CS holds the segment address which is 4569 H Instruction pointer IP

holds the offset address which is 10A0 H The physical 20-bit address is calculated as follows

Segment address: 45690 H

Offset address:+ 10A0 H

Physical address: 46730 H

Most of the registers contain data/instruction offsets within 64 KB memory segment. There are

four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1

MB of processor memory these 4 segments are located the processor uses four segment

3

registers:

Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor

instructions. The processor uses CS segment for all accesses to instructions referenced by

instruction pointer (IP) register. CS register cannot be changed directly. The CS register is

automatically updated during far jump, far call and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack.

By default, the processor assumes that all data referenced by the stack pointer (SP) and base

pointer (BP) registers is located in the stack segment. SS register can be changed directly using

POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program

data. By default, the processor assumes that all data referenced by general registers (AX, BX,

CX, DX) and index register (SI, DI) is located in the data segment. DS register can be

changed directly using POP and LDS instructions.

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with

program data. By default, the processor assumes that the DI register references the ES

segment in string manipulation instructions. ES register can be changed directly using POP

and LES instructions.

It is possible to change default segments used by general and index registers by prefixing

instructions with a CS, SS, DS or ES prefix.

Execution Unit:

All general registers of the 8086 microprocessor can be used for arithmetic and logic operations.

The general registers are:

Accumulator register consists of 2 8-bit registers AL and AH, which can be combined

together and used as a 16-bit register AX. AL in this case contains the low-order byte of the

word, and AH contains the high-order byte. Accumulator can be used for I/O operations and

string manipulation. Base register consists of 2 8-bit registers BL and BH, which can be

combined together and used as a 16-bit register BX. BL in this case contains the low-order

byte of the word, and BH contains the high-order byte. BX register usually contains a data

pointer used for based, based indexed or register indirect addressing.

Count register consists of 2 8-bit registers CL and CH, which can be combined together and

used as a 16-bit register CX. When combined, CL register contains the low-order byte of the

word, and CH contains the high-order byte. Count register can be used as a counter in string

manipulation and shift/rotate instructions.

Data register consists of 2 8-bit registers DL and DH, which can be combined together and

used as a 16-bit register DX. When combined, DL register contains the low-order byte of the

word, and DH contains the high-order byte. Data register can be used as a port number in I/O

operations. In integer 32-bit multiply and divide instruction the DX register contains high-

order word of the initial or resulting number.

4

The following registers are both general and index registers:

Stack Pointer (SP) is a 16-bit register pointing to program stack.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is

usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. SI is used for indexed, based indexed and register

indirect addressing, as well as a source data address in string manipulation instructions.

Destination Index (DI) is a 16-bit register. DI is used for indexed, based indexed and

register indirect addressing, as well as a destination data address in string manipulation

instructions.

Other registers:

Instruction Pointer (IP) is a 16-bit register.

Flags is a 16-bit register containing 9 1-bit flags:

• Overflow Flag (OF) - set if the result is too large positive number, or is too small

negative number to fit into destination operand.

• Direction Flag (DF) - if set then string manipulation instructions will auto-decrement

index registers. If cleared then the index registers will be auto-incremented.

• Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.

• Single-step Flag (TF) - if set then single-step interrupt will occur after the next

instruction.

• Sign Flag (SF) - set if the most significant bit of the result is set.

• Zero Flag (ZF) - set if the result is zero.

•

Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the

AL register.

• Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the

result is even.

• Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit

during last result calculation.

5

LECTURE 2: PIN DETAILS OF 8086

2. PIN DETAILS OF 8086

The following pin function descriptions are for 8086 systems in either minimum or maximum

mode. The 'Local

Bus'' in these descriptions is the direct multiplexed bus interface connection to the 8086 (without

regard to additional bus buffers).

AD15±AD0 2±16, 39 -ADDRESS DATA BUS: These lines constitute the time multiplexed

memory/IO address (T1), and data (T2, T3, TW, T4) bus. A0 is analogous to BHE for the lower

byte of the data bus, pins D7±D0. It is LOW during T1 when a byte is to be transferred on the

lower portion of the bus in memory or I/O operations. Eight-bit oriented devices tied to the

lower half would normally use A0 to condition chip select functions. (See BHE.) These lines are

active HIGH and float to 3-state OFF during interrupt acknowledge and local bus ''hold

acknowledge''

A19/S6,, A18/S5 , A17/S4, A16/S3 35±38 - ADDRESS/STATUS: During T1 these are the four

most significant, address lines for memory operations. During I/O operations these, lines are

LOW. During memory and I/O operations, status information is available on these lines during

T2, T3, TW, T4. The status of the interrupt enable FLAG bit (S5) is updated at the beginning of

each CLK cycle. A17/S4 and A16/S3 are encoded as shown. This information indicates which

relocation register is presently being used for data accessing. These lines float to 3-state OFF

during local bus ''hold acknowledge.''

BHE/S7 34 - BUS HIGH ENABLE/STATUS: During T1 the bus high enable signal (BHE)

should be used to enable data onto the most significant half of the data bus, pins D15±D8. Eight-

bit oriented devices tied to the upper half of the bus would normally use BHE to condition chip

select functions. BHE is LOW during T1 for read, write, and interrupt acknowledge cycles when

a byte is to be transferred on the high portion of the bus. The S7 status information is available

during T2, T3, and T4. The signal is active LOW, and floats to 3-state OFF in hold''. It is LOW

during T1 for the first interrupt acknowledge cycle.

RD 32 READ: Read strobe indicates that the processor is performing a memory or I/O read

cycle, depending on the state of the S2 pin. This signal is used to read devices which reside on

the 8086 local bus. RD is active LOW during T2, T3 and TW of any read cycle, and is

guaranteed to remain HIGH in T2 until the 8086 local bus has floated. This signal floats to 3-

state OFF in ' ho l d acknowledge''.

READY 22 - READY: is the acknowledgement from the addressed memory or I/O device

that it will complete the data transfer. The READY signal from memory/IO is synchronized by

the 8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY

input is not synchronized. Correct operation is not guaranteed if the setup and hold times are not

met.

6

INTR 18 - INTERRUPT REQUEST: is a level triggered input which is sampled during the last

clock cycle of each instruction to determine if the processor should enter into an interrupt

acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located

in system memory. It can be internally masked by software resetting the interrupt enable bit.

INTR is internally synchronized. This signal is active HIGH.

TEST 23 TEST: input is examined by the ''Wait'' instruction. If the TEST input is LOW

execution continues, otherwise the processor waits in an ''Idle'' state. This input is synchronized

internally during each clock cycle on the leading edge of CLK.

NMI 17 NON-MASKABLE INTERRUPT an edge triggered input which causes a type 2

interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system

memory. NMI is not maskable internally by software. A transition from LOW to HIGH initiates

the interrupt at the end of the current instruction. This input is internally synchronized.

RESET 21 - RESET: causes the processor to immediately terminate its present activity. The

signal must be active HIGH for at least four clock cycles. It restarts execution, as described in

the Instruction Set description, when RESET returns LOW. RESET is internally synchronized.

CLK 19 CLOCK: provides the basic timing for the processor and bus controller. It is

asymmetric with a 33% duty cycle to provide optimized internal timing.

VCC 40 VCC: a5V power supply pin. ,GND 1, 20 GROUND

MN/MX 33 I MINIMUM/MAXIMUM: indicates what mode the processor

is to operate in. The two modes are discussed in the following sections.

Operating Modes of 8086

 There are two modes of operation for Intel 8086, namely the minimum mode and the

maximum mode. When only one 8086 CPU is to be used in a microcomputer system the 8086 is

used in the minimum mode of operation. In this mode the CPU issues the control signals

required by memory and I/O devices. In a multiprocessor system it operates in the maximum

mode. In case of maximum mode of operation control signals are issued by Intel 8288 bus

controller which is used with 8086 for this very purpose. The level of the pin MN/MX′ decides

the operating mode of 8086. When MN/MX′ is high the CPU operates in the minimum mode.

When it is low the CPU operates in the maximum mode. From pin 24 to 31 issue two different

sets of signals. One set of signals is issued when the CPU operates in the maximum mode. Thus

the pins from 24 to 31 have alternate functions.

Pin description for Minimum Mode:

For the minimum mode of operation the pin MN / MX′ is connected to 5 V D.C. supply, i.e., MN

/ MX′ = Vcc. The description of the pins from 24 to 31 for the minimum mode is as follows:

7

INTA′ (Output): Pin No. 24 Interrupt acknowledge. On receiving interrupt signal the processor

issues an interrupt acknowledge signal. It is active LOW.

ALE (Output) Pin No. 25 Address latch enable. It goes High during T1. The microprocessor

sends this signal to latch the address into the Intel 8282 / 8283 latch.

DEN′ (Output) Pin No. 26. Data enable. When Intel 8286 / 8287 octal bus transceiver is used this

signal acts as an output enable signal. It is active low.

DT / R′ (Output) Pin No. 27. Data Transmit / Receive. When Intel 8286 / 8287 octal bus

transceiver is used this signal controls the direction of data flow through the transceiver. When it

is HIGH data are sent out. When it is LOW data are received.

M / IO′ (Output) Pin No. 28. Memory or I/O access. When it is HIGH the CPU wants to access

memory. When it is LOW the CPU wants to access I/O device.

WR′ (Output): Pin No. 29 Write. When it is LOW the CPU performs memory or I/O write

operation.

HLDA(Output): Pin No. 30. HOLD acknowledge. It is issued by the processor when it receives

HOLD signal. It is active HIGH signal. When HOLD request is removed HLDA goes LOW.

HOLD (Input) Pin No. 31. Hold. When another device in microcomputer system system wants to

use the address and data bus, it sends a HOLD request to CPU through this pin. It is an active

HIGH signal.

Pin description for Maximum Mode:

For the maximum mode of operation the pin MN / MX′ is connected to Ground, i.e., MN / MX′

= Vcc. The description of the pins from 24 to 31 for the maximum mode is as follows:

QS1, QS0 (Output) : Pin No. 24, 25. Instruction Queue Status. Logics are given below:

QS1 QS2 Function

0 0 No Operation

0 1 1st byte of opcode from queue

1 0 Empty the queue

1 1 Subsequent byte from queue

Table 4.1: Functions of QS1 and QS2

S2, S1, S0 (Output) 26±28 STATUS: active during T4, T1, and T2 and is returned to the

8

passive state (1, 1, 1) during T3 or during TW when READY is HIGH. This status is used by the

8288 Bus Controller to generate all memory and I/O access control signals. Any change by S2,

S1, or S0 during T4 is used to indicate the beginning of a bus cycle, and the return to the passive

state in T3 or TW is used to indicate the end of a bus cycle

S2 S1 S0 Function

0 0 0 Interrupt Acknowledge

0 0 1 Read I/O Port

0 1 0 Write I/O Port

0 1 1 Halt

1 0 0 Code access

1 0 1 Write memory

1 1 0 Passive state

1 1 1

Table 4.1: Functions of S2, S1 and S0

LOCK (O)

It indicates to another system bus master, not to gain control of the system bus while LOCK is

active Low. The LOCK signal is activated by the "LOCK" prefix instruction and remains active

until the completion of the instruction. This signal is active Low and floats to tri-state OFF

during 'hold acknowledge'.

RQ/GT0 and RQ/GT1 (I/O): Request/Grant

These pins are used by other processors in a multi processor organization. Local bus masters of

other processors force the processor to release the local bus at the end of the processors current

bus cycle. Each pin is bi-directional and has an internal pull up resistors. Hence they may be left

un-connected.

9

LECTURE 3: ADDRESSING MODES OF 8086

3. ADDRESSING MODES

Addressing mode indicates a way of locating data or operands. Depending upon the data

types used in the instruction and the memory addressing modes, any instruction may belong to

one or more addressing modes, or some instruction may not belong to any of the addressing

modes. Thus the addressing modes describe the types of operands and the way they are accessed

for executing an instruction. Here, we will present the addressing modes of the instructions

depending upon their types. According to the flow of instruction execution, the instructions may

be categorized as

i. Sequential control flow instructions and

ii. Control transfer instructions

Sequential control flow instructions are the instructions, which after execution, transfer

control to the next instruction appearing immediately after it (in the sequence) in the program.

For example, the arithmetic, logical, data transfer and processor control instructions are

sequential control flow instructions. The control transfer instructions, on the other hand, transfer

control to some predefined address somehow specified in the instruction after their execution.

For example, INT, CALL, RET and JUMP instructions fall under this category.

The addressing modes for sequential control transfer instructions are explained as follows:

1. Immediate: In this type of addressing, immediate data is a part of instruction, and appears

in the form of successive byte or bytes.

Example: MOV AX, 0005H

In the above example, 0005H is the immediate data. The immediate data may be 8-bit or

16-bit in size.

2. Direct: In the direct addressing mode, a 16-bit memory address (offset) is directly

specified in the instruction as a part of it.

Example: MOV AX, [5000H]

Here, data resides in a memory location in the data segment, whose effective address may

be computed using 5000H as the offset address and content of DS as segment address.

The effective address, here, is 10H*DS+5000H.

3. Register: In the direct addressing mode, the data is stored in a register and it is referred

using the particular register. All the registers, except IP, may be used in this mode.

Example: MOV BX, AX

4. Register Indirect: Sometimes, the address of the memory location, which contains data or

operand, is determined in an indirect way, using the offset registers. This mode of

10

addressing is known as register indirect mode. In this addressing mode, the offset address

of data is in either BX or SI or DI registers. The default segment is either DS or ES. The

data is supposed to be available at the address pointed to by the content of any of the

above registers in the default data segment.

Example: MOV AX, [BX]

Here, data is present in a memory location in DS whose offset address is in BX. The

effective address of the data is given as 10H*DS+ [BX].

5. Indexed: In this addressing mode, offset of the operand is stored in one of the index

registers. DS and ES are the default segments for index registers SI and DI respectively.

This mode is a special case of the above discussed register indirect addressing mode.

Example: MOV AX,[SI]

Here, data is available at an offset address stored in SI in DS. The effective address, in

this case, is computed as 10H*DS+ [SI].

6. Register Relative: In this addressing mode, the data is available at an effective address

formed by adding an 8-bit or 16-bit displacement with the content of any one of the

registers BX, BP, SI and DI in the default (either DS or ES) segment. The example given

before explains this mode.

Example: MOV AX, 50H [BX]

Here, effective address is given as 10H*DS+50H+ [BX].

7. Based Indexed: The effective address of data is formed, in this addressing mode, by

adding content of a base register (any one of BX or BP) to the content of an index

register (any one of SI or DI). The default segment register may be ES or DS.

Example: MOV AX, [BX] [SI]

Here, BX is the base register and SI is the index register. The effective address is

computed as 10H*DS+ [BX] + [SI].

8. Relative Based Indexed: The effective address is formed by adding an 8-bit or 16-bit

displacement with the sum of contents of any one of the bases registers (BX or BP) and

any one of the index registers, in a default segment.

Example: MOV AX, 50H [BX] [SI]

Here, 50H is an immediate displacement, BX is a base register and SI is an index register.

The effective address of data is computed as 160H*DS+ [BX]+ [SI] + 50H.

11

LECTURE 4: 8086 INSTRUCTION SET

4. 8086 INSTRUCTION SET

The 8086 microprocessor supports 8 types of instructions −

• Data Transfer Instructions

• Arithmetic Instructions

• Bit Manipulation Instructions

• String Instructions

• Program Execution Transfer Instructions (Branch & Loop Instructions)

• Processor Control Instructions

• Iteration Control Instructions

• Interrupt Instructions

Let us now discuss these instruction sets in detail.

Data Transfer Instructions

These instructions are used to transfer the data from the source operand to the destination

operand. Following are the list of instructions under this group −

Instruction to transfer a word

• MOV − Used to copy the byte or word from the provided source to the provided

destination.

• PPUSH − Used to put a word at the top of the stack.

• POP − Used to get a word from the top of the stack to the provided location.

• PUSHA − Used to put all the registers into the stack.

• POPA − Used to get words from the stack to all registers.

• XCHG − Used to exchange the data from two locations.

• XLAT − Used to translate a byte in AL using a table in the memory.

Instructions for input and output port transfer

• IN − Used to read a byte or word from the provided port to the accumulator.

• OUT − Used to send out a byte or word from the accumulator to the provided port.

Instructions to transfer the address

• LEA − Used to load the address of operand into the provided register.

• LDS − Used to load DS register and other provided register from the memory

• LES − Used to load ES register and other provided register from the memory.

Instructions to transfer flag registers

• LAHF − Used to load AH with the low byte of the flag register.

• SAHF − Used to store AH register to low byte of the flag register.

• PUSHF − Used to copy the flag register at the top of the stack.

• POPF − Used to copy a word at the top of the stack to the flag register.

Arithmetic Instructions

12

These instructions are used to perform arithmetic operations like addition, subtraction,

multiplication, division, etc.

Following is the list of instructions under this group −

Instructions to perform addition

• ADD − Used to add the provided byte to byte/word to word.

• ADC − Used to add with carry.

• INC − Used to increment the provided byte/word by 1.

• AAA − Used to adjust ASCII after addition.

• DAA − Used to adjust the decimal after the addition/subtraction operation.

Instructions to perform subtraction

• SUB − Used to subtract the byte from byte/word from word.

• SBB − Used to perform subtraction with borrow.

• DEC − Used to decrement the provided byte/word by 1.

• NPG − Used to negate each bit of the provided byte/word and add 1/2’s complement.

• CMP − Used to compare 2 provided byte/word.

• AAS − Used to adjust ASCII codes after subtraction.

• DAS − Used to adjust decimal after subtraction.

Instruction to perform multiplication

• MUL − Used to multiply unsigned byte by byte/word by word.

• IMUL − Used to multiply signed byte by byte/word by word.

• AAM − Used to adjust ASCII codes after multiplication.

Instructions to perform division

• DIV − Used to divide the unsigned word by byte or unsigned double word by word.

• IDIV − Used to divide the signed word by byte or signed double word by word.

• AAD − Used to adjust ASCII codes after division.

• CBW − Used to fill the upper byte of the word with the copies of sign bit of the lower

byte.

• CWD − Used to fill the upper word of the double word with the sign bit of the lower

word.

Bit Manipulation Instructions

These instructions are used to perform operations where data bits are involved, i.e. operations

like logical, shift, etc.

Following is the list of instructions under this group −

Instructions to perform logical operation

• NOT − Used to invert each bit of a byte or word.

• AND − Used for adding each bit in a byte/word with the corresponding bit in another

byte/word.

• OR − Used to multiply each bit in a byte/word with the corresponding bit in another

byte/word.

• XOR − Used to perform Exclusive-OR operation over each bit in a byte/word with the

corresponding bit in another byte/word.

• TEST − Used to add operands to update flags, without affecting operands.

Instructions to perform shift operations

13

• SHL/SAL − Used to shift bits of a byte/word towards left and put zero(S) in LSBs.

• SHR − Used to shift bits of a byte/word towards the right and put zero(S) in MSBs.

• SAR − Used to shift bits of a byte/word towards the right and copy the old MSB into the

new MSB.

Instructions to perform rotate operations

• ROL − Used to rotate bits of byte/word towards the left, i.e. MSB to LSB and to Carry

Flag [CF].

• ROR − Used to rotate bits of byte/word towards the right, i.e. LSB to MSB and to Carry

Flag [CF].

• RCR − Used to rotate bits of byte/word towards the right, i.e. LSB to CF and CF to

MSB.

• RCL − Used to rotate bits of byte/word towards the left, i.e. MSB to CF and CF to LSB.

String Instructions

String is a group of bytes/words and their memory is always allocated in a sequential order.

Following is the list of instructions under this group −

• REP − Used to repeat the given instruction till CX ≠ 0.

• REPE/REPZ − Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.

• REPNE/REPNZ − Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.

• MOVS/MOVSB/MOVSW − Used to move the byte/word from one string to another.

• COMS/COMPSB/COMPSW − Used to compare two string bytes/words.

• INS/INSB/INSW − Used as an input string/byte/word from the I/O port to the provided

memory location.

• OUTS/OUTSB/OUTSW − Used as an output string/byte/word from the provided

memory location to the I/O port.

• SCAS/SCASB/SCASW − Used to scan a string and compare its byte with a byte in AL

or string word with a word in AX.

• LODS/LODSB/LODSW − Used to store the string byte into AL or string word into AX.

Program Execution Transfer Instructions (Branch and Loop Instructions)

These instructions are used to transfer/branch the instructions during an execution. It includes

the following instructions −

Instructions to transfer the instruction during an execution without any condition −

• CALL − Used to call a procedure and save their return address to the stack.

• RET − Used to return from the procedure to the main program.

• JMP − Used to jump to the provided address to proceed to the next instruction.

Instructions to transfer the instruction during an execution with some conditions −

• JA/JNBE − Used to jump if above/not below/equal instruction satisfies.

• JAE/JNB − Used to jump if above/not below instruction satisfies.

• JBE/JNA − Used to jump if below/equal/ not above instruction satisfies.

• JC − Used to jump if carry flag CF = 1

• JE/JZ − Used to jump if equal/zero flag ZF = 1

• JG/JNLE − Used to jump if greater/not less than/equal instruction satisfies.

• JGE/JNL − Used to jump if greater than/equal/not less than instruction satisfies.

14

• JL/JNGE − Used to jump if less than/not greater than/equal instruction satisfies.

• JLE/JNG − Used to jump if less than/equal/if not greater than instruction satisfies.

• JNC − Used to jump if no carry flag (CF = 0)

• JNE/JNZ − Used to jump if not equal/zero flag ZF = 0

• JNO − Used to jump if no overflow flag OF = 0

• JNP/JPO − Used to jump if not parity/parity odd PF = 0

• JNS − Used to jump if not sign SF = 0

• JO − Used to jump if overflow flag OF = 1

• JP/JPE − Used to jump if parity/parity even PF = 1

• JS − Used to jump if sign flag SF = 1

Processor Control Instructions

These instructions are used to control the processor action by setting/resetting the flag values.

Following are the instructions under this group −

• STC − Used to set carry flag CF to 1

• CLC − Used to clear/reset carry flag CF to 0

• CMC − Used to put complement at the state of carry flag CF.

• STD − Used to set the direction flag DF to 1

• CLD − Used to clear/reset the direction flag DF to 0

• STI − Used to set the interrupt enable flag to 1, i.e., enable INTR input.

• CLI − Used to clear the interrupt enable flag to 0, i.e., disable INTR input.

Iteration Control Instructions

These instructions are used to execute the given instructions for number of times. Following is

the list of instructions under this group −

• LOOP − Used to loop a group of instructions until the condition satisfies, i.e., CX = 0

• LOOPE/LOOPZ − Used to loop a group of instructions till it satisfies ZF = 1 & CX = 0

• LOOPNE/LOOPNZ − Used to loop a group of instructions till it satisfies ZF = 0 & CX

= 0

• JCXZ − Used to jump to the provided address if CX = 0

Interrupt Instructions

These instructions are used to call the interrupt during program execution.

• INT − Used to interrupt the program during execution and calling service specified.

• INTO − Used to interrupt the program during execution if OF = 1

• IRET − Used to return from interrupt service to the main program

15

Sample Assembly Language Program:

1. Write an assembly language program in 8086 to add two 16-bit numbers.

PROGRAM:

LABEL OPCODE OPERAND COMMENTS

START MOV CX, 9273 Get 16-bit data in AX

 MOV DX, 2464 Get another 16-bit data in DX

 ADD CX, DX (CX) ← (CX) + (DX)

END INT3 Halt the program

1

MODULE 5

LECTURE 1: ARCHITECTURE OF 8051

1. 8051 MICROCONTROLLER

The 8051 Microcontroller was designed in 1980’s by Intel. Its foundation was on Harvard

Architecture and was developed principally for bringing into play in Embedded Systems. At first

it was created by means of NMOS technology but as NMOS technology needs more power to

function therefore Intel re-intended Microcontroller 8051 employing CMOS technology and a

new edition came into existence with a letter ‘C’ in the title name, for illustration: 80C51. These

most modern Microcontrollers need fewer amount of power to function in comparison to their

forerunners.

There are two buses in 8051 Microcontroller one for program and other for data. As a result,

it has two storage rooms for both program and data of 64K by 8 size. The microcontroller

comprise of 8 bit accumulator & 8 bit processing unit. It also consists of 8 bit B register as

majorly functioning blocks and 8051 microcontroller programming is done with embedded C

Language using Keil software. It also has a number of other 8 bit and 16 bit registers.

For internal functioning & processing Microcontroller 8051 comes with integrated built-in

RAM. This is prime memory and is employed for storing temporary data. It is unpredictable

memory i.e. its data can get be lost when the power supply to the Microcontroller switched OFF.

1.1. 8051 MICROCONTROLLER ARCHITECTURE

Microcontroller 8051 block diagram is shown below. Let’s have a closer look on features of

8051 microcontroller design:

Figure 4.1: Block Diagram of 8051 Microcontroller

2

CPU (Central Processor Unit):

As we may be familiar that Central Processor Unit or CPU is the mind of any processing

machine. It scrutinizes and manages all processes that are carried out in the Microcontroller.

User has no power over the functioning of CPU. It interprets program printed in storage space

(ROM) and carries out all of them and do the projected duty. CPU manages different types of

registers in 8051 microcontroller.

Interrupts:

As the heading put forward, Interrupt is a sub-routine call that reads the Microcontroller’s key

function or job and helps it to perform some other program which is extra important at that point

of time. The characteristic of 8051 Interrupt is extremely constructive as it aids in emergency

cases. Interrupts provides us a method to postpone or delay the current process, carry out a sub-

routine task and then all over again restart standard program implementation.

The Micro-controller 8051 can be assembled in such a manner that it momentarily stops or break

the core program at the happening of interrupt. When sub-routine task is finished then the

implementation of core program initiates automatically as usual. There are 5 interrupt supplies in

8051 Microcontroller, two out of five are peripheral interrupts, two are timer interrupts and one

is serial port interrupt.

Memory:

Micro-controller needs a program which is a set of commands. This program enlightens

Microcontroller to perform precise tasks. These programs need a storage space on which they

can be accumulated and interpret by Microcontroller to act upon any specific process. The

memory which is brought into play to accumulate the program of Microcontroller is recognized

as Program memory or code memory. In common language it’s also known as Read Only

Memory or ROM.

Microcontroller also needs a memory to amass data or operands for the short term. The storage

space which is employed to momentarily data storage for functioning is acknowledged as Data

Memory and we employ Random Access Memory or RAM for this principle reason.

Microcontroller 8051 contains code memory or program memory 4K so that is has 4KB Rom

and it also comprise of data memory (RAM) of 128 bytes.

Bus:

Fundamentally Bus is a group of wires which functions as a communication canal or mean for

the transfer Data. These buses comprise of 8, 16 or more cables. As a result, a bus can bear 8

bits, 16 bits all together. There are two types of buses:

1. Address Bus: Microcontroller 8051 consists of 16 bit address bus. It is brought into play

to address memory positions. It is also utilized to transmit the address from Central

Processing Unit to Memory.

2. Data Bus: Microcontroller 8051 comprise of 8 bits data bus. It is employed to cart data.

Oscillator:

As we all make out that Microcontroller is a digital circuit piece of equipment, thus it needs

timer for its function. For this function, Microcontroller 8051 consists of an on-chip oscillator

which toils as a time source for CPU (Central Processing Unit). As the productivity thumps of

3

oscillator are steady as a result, it facilitates harmonized employment of all pieces of 8051

Microcontroller. Input/output Port: As we are acquainted with that Microcontroller is employed

in embedded systems to manage the functions of devices.

Thus to gather it to other machinery, gadgets or peripherals we need I/O (input/output)

interfacing ports in Micro-controller. For this function Micro-controller 8051 consists of 4

input/output ports to unite it to other peripherals. Timers / Counters: Micro-controller 8051 is

incorporated with two 16 bit counters & timers. The counters are separated into 8 bit registers.

The timers are utilized for measuring the intervals, to find out pulse width etc.

1.2. 8051 MICROCONTROLLER MEMORY ORGANIZATION

The 8051 Microcontroller Memory is separated in Program Memory (ROM) and Data Memory

(RAM). The Program Memory of the 8051 Microcontroller is used for storing the program to be

executed i.e. instructions. The Data Memory on the other hand, is used for storing temporary

variable data and intermediate results.

Program Memory (ROM) of 8051 Microcontroller

In 8051 Microcontroller, the code or instructions to be executed are stored in the Program

Memory, which is also called as the ROM of the Microcontroller. The original 8051

Microcontroller by Intel has 4KB of internal ROM.

Some variants of 8051 like the 8031 and 8032 series doesn’t have any internal ROM (Program

Memory) and must be interfaced with external Program Memory with instructions loaded in it.

Almost all modern 8051 Microcontrollers, like 8052 Series, have 8KB of Internal Program

Memory (ROM) in the form of Flash Memory (ROM) and provide the option of reprogramming

the memory.

Figure 4.2a

In case of 4KB of Internal ROM, the address space is 0000H to 0FFFH. If the address space i.e.

the program addresses exceed this value, then the CPU will automatically fetch the code from the

external Program Memory.

For this, the External Access Pin (EA Pin) must be pulled HIGH i.e. when the EA Pin is high,

the CPU first fetches instructions from the Internal Program Memory in the address range of

4

0000H to 0FFFFH and if the memory addresses exceed the limit, then the instructions are

fetched from the external ROM in the address range of 1000H to FFFFH.

Figure 4.2b

There is another way to fetch the instructions: ignore the Internal ROM and fetch all the

instructions only from the External Program Memory (External ROM). For this scenario, the EA

Pin must be connected to GND. In this case, the memory addresses of the external ROM will be

from 0000H to FFFFH.

Figure 4.2c

Data Memory (RAM) of 8051 Microcontroller

The Data Memory or RAM of the 8051 Microcontroller stores temporary data and intermediate

results that are generated and used during the normal operation of the microcontroller. Original

Intel’s 8051 Microcontroller had 128B of internal RAM.

But almost all modern variants of 8051 Microcontroller have 256B of RAM. In this 256B, the

first 128B i.e. memory addresses from 00H to 7FH is divided in to Working Registers (organized

as Register Banks), Bit – Addressable Area and General Purpose RAM (also known as

Scratchpad area).

In the first 128B of RAM (from 00H to 7FH), the first 32B i.e. memory from addresses 00H to

5

1FH consists of 32 Working Registers that are organized as four banks with 8 Registers in each

Bank.

Figure 4.3: Data Memory of 8051

The 4 banks are named as Bank0, Bank1, Bank2 and Bank3. Each Bank consists of 8 registers

named as R0 – R7. Each Register can be addressed in two ways: either by name or by address.

To address the register by name, first the corresponding Bank must be selected. In order to select

the bank, we have to use the RS0 and RS1 bits of the Program Status Word (PSW) Register (RS0

and RS1 are 3rd and 4th bits in the PSW Register).

When addressing the Register using its address i.e. 12H for example, the corresponding Bank

may or may not be selected. (12H corresponds to R2 in Bank2).

The next 16B of the RAM i.e. from 20H to 2FH are Bit – Addressable memory locations. There

are totally 128 bits that can be addressed individually using 00H to 7FH or the entire byte can be

addressed as 20H to 2FH.

For example 32H is the bit 2 of the internal RAM location 26H.

The final 80B of the internal RAM i.e. addresses from 30H to 7FH, is the general purpose RAM

area which are byte addressable.

These lower 128B of RAM can be addressed directly or indirectly.

The upper 128B of the RAM i.e. memory addresses from 80H to FFH is allocated for Special

Function Registers (SFRs). SFRs control specific functions of the 8051 Microcontroller. Some of

the SFRs are I/O Port Registers (P0, P1, P2 and P3), PSW (Program Status Word), A

(Accumulator), IE (Interrupt Enable), PCON (Power Control), etc.

6

Table 4.1

SRFs Memory addresses are only direct addressable. Even though some of the addresses

between 80H and FFH are not assigned to any SFR, they cannot be used as additional RAM area.

In some microcontrollers, there is an additional 128B of RAM, which share the memory address

with SFRs i.e. 80H to FFH. But, this additional RAM block is only accessed by indirect

addressing.

7

LECTURE 2: PIN DESCRIPTION OF 8051

2. 8051 MICROCONTROLLER PIN DIAGRAM

As mentioned in the previous tutorial, 8051 Microcontroller is available in a variety of packages

like 40 – pin DIP or 44 – lead PLCC and TQFP. The pin orientation of an 8051 Microcontroller

may change with the package but the Pin Configuration is same.

The following image shows the 8051 Microcontroller Pin Diagram with respect to a 40 – pin

Dual In-line Package (DIP).

Figure 4.4: Pin Diagram of 8051 Microcontroller

Since it is a 40 – pin DIP IC, each side contains 20 Pins. We have also seen that there other

packages of 8051 like the 44 – Lead PLCC and the 44 – Lead TQFP. The following image shows

the 8051 Microcontroller Pin Diagram for these packages specifically.

8

The Pin Description or Pin Configuration of the 8051 Microcontroller will describe the functions

of each pins of the 8051 Microcontroller. Let us now see the pin description.

Pins 1 – 8 (PORT 1): Pins 1 to 8 are the PORT 1 Pins of 8051. PORT 1 Pins consists of 8 – bit

bidirectional Input / Output Port with internal pull – up resistors. In older 8051 Microcontrollers,

PORT 1 doesn’t serve any additional purpose but just 8 – bit I/O PORT.

In some of the newer 8051 Microcontrollers, few PORT 1 Pins have dual functions. P1.0 and

P1.1 act as Timer 2 and Timer 2 Trigger Input respectively.

P1.5, P1.6 and P1.7 act as In-System Programming Pins i.e. MOSI, MISO and SCK respectively.

Pin 9 (RST): Pin 9 is the Reset Input Pin. It is an active HIGH Pin i.e. if the RST Pin is HIGH

for a minimum of two machine cycles, the microcontroller will be reset. During this time, the

oscillator must be running.

Pins 10 – 17 (PORT 3): Pins 10 to 17 form the PORT 3 pins of the 8051 Microcontroller. PORT

3 also acts as a bidirectional Input / Output PORT with internal pull-ups. Additionally, all the

PORT 3 Pins have special functions. The following table gives the details of the additional

functions of PORT 3 Pins.

PORT 3 Pin Function Description

P3.0 RXD Serial Input

P3.1 TXD Serial Output

P3.2 INT0 External Interrupt 0

P3.3 INT1 External Interrupt 1

P3.4 T0 Timer 0

P3.5 T1 Timer 1

P3.6 WR External Memory Write

P3.7 RD External Memory Read

Table 4.2

Pins 18 & 19: Pins 18 and 19 i.e. XTAL 2 and XTAL 1 are the pins for connecting external

oscillator. Generally, a Quartz Crystal Oscillator is connected here.

Pin 20 (GND): Pin 20 is the Ground Pin of the 8051 Microcontroller. It represents 0V and is

connected to the negative terminal (0V) of the Power Supply.

Pins 21 – 28 (PORT 2): These are the PORT 2 Pins of the 8051 Microcontroller. PORT 2 is also

a Bidirectional Port i.e. all the PORT 2 pins act as Input or Output. Additionally, when external

memory is interfaced, PORT 2 pins act as the higher order address byte. PORT 2 Pins have

internal pull-ups.

Pin 29 (PSEN): Pin 29 is the Program Store Enable Pin (PSEN). Using this pins, external

Program Memory can be read.

Pin 30 (ALE/PROG): Pin 30 is the Address Latch Enable Pin. Using this Pins, external address

can be separated from data (as they are multiplexed by 8051).

During Flash Programming, this pin acts as program pulse input (PROG).

Pin 31 (EA/VPP): Pin 31 is the External Access Enable Pin i.e. allows external Program

Memory. Code from external program memory can be fetched only if this pin is LOW. For

normal operations, this pins is pulled HIGH.

9

During Flash Programming, this Pin receives 12V Programming Enable Voltage (VPP).

Pins 32 – 39 (PORT 0): Pins 32 to 39 are PORT 0 Pins. They are also bidirectional Input /

Output Pins but without any internal pull-ups. Hence, we need external pull-ups in order to use

PORT 0 pins as I/O PORT.

In addition to acting as I/O PORT, PORT 0 also acts as lower order address/data bus when

external memory is accessed.

Pin 40 (VCC): Pin 40 is the power supply pin to which the supply voltage is given (+5V).

8051 Microcontroller Basic Circuit

Now that we have seen the 8051 Microcontroller Pin Diagram and corresponding Pin

Description, we will proceed to the basic circuit or schematic of the 8051 Microcontroller. The

following image shows the basic circuit of the 8051 Microcontroller.

Figure 4.5: 8051 Microcontroller Basic Circuit

his basic circuit of 8051 microcontroller is the minimal interface required for it to work. The

basic circuit includes a Reset Circuit, the oscillator circuit and power supply. Let us discuss a

little bit deeper about this basic circuit of 8051 Microcontroller.

First is the power supply. Pins 40 and 20 (VCC and GND) of the 8051 Microcontroller are

connected to +5V and GND respectively.

Next is the Reset Circuit. A logic HIGH (+5V) on Reset Pin for a minimum of two machine

cycles (24 clock cycles) will reset the 8051 Microcontroller. The reset circuit of the 8051

Microcontroller consists of a capacitor, a resistor and a push button and this type of reset circuit

provides a Manual Reset Option. If you remove the push button, then the reset circuit becomes a

Power-On Reset Circuit.

The next part of the basic circuit of the 8051 Microcontroller is the Oscillator Circuit or the

Clock Circuit. A Quartz Crystal Oscillator is connected across XTAL1 and XTAL2 pins i.e. Pins

19 and 18. The capacitors C1 and C2 can be selected in the range of 20pF to 40pF.

10

As mentioned in the 8051 Microcontroller Pin Description, PORTS 1, 2 and 3, all have internal

pull – ups and hence can be directly used as Bidirectional I/O Ports. But, we need to add external

Pull – ups for PORT 0 Pins in order to use it as an I/O Port.

Generally, a 1KΩ Resistor Pack of 8 Resistors is used as a Pull – up for the PORT 0 of the 8051

Microcontroller.

11

LECTURE 3: INSTRUCTION SET OF 8051

3. 8051 MICROCONTROLLER INSTRUCTION SET

Writing a Program for any Microcontroller consists of giving commands to the Microcontroller

in a particular order in which they must be executed in order to perform a specific task. The

commands to the Microcontroller are known as a Microcontroller’s Instruction Set.

Just as our sentences are made of words, a Microcontroller’s (for that matter, any computer)

program is made of Instructions. Instructions written in a program tell the Microcontroller which

operation to carry out.

An Instruction Set is unique to a family of computers. This tutorial introduces the 8051

Microcontroller Instruction Set also called as the MCS-51 Instruction Set.

As the 8051 family of Microcontrollers are 8-bit processors, the 8051 Microcontroller Instruction

Set is optimized for 8-bit control applications. As a typical 8-bit processor, the 8051

Microcontroller instructions have 8-bit Opcodes. As a result, the 8051 Microcontroller

instruction set can have up to 28 = 256 Instructions.

.

A Brief Look at 8051 Microcontroller Instructions and Groups

Before going into the details of the 8051 Microcontroller Instruction Set, Types of Instructions

and the Addressing Mode, let us take a brief look at the instructions and the instruction groups of

the 8051 Microcontroller Instruction Set (the MCS-51 Instruction Set).

The following table shows the 8051 Instruction Groups and Instructions in each group. There are

49 Instruction Mnemonics in the 8051 Microcontroller Instruction Set and these 49 Mnemonics

are divided into five groups.

DATA

TRANSFER
ARITHMETIC LOGICAL BOOLEAN

PROGRAM

BRANCHING

MOV ADD ANL CLR LJMP

MOVC ADDC ORL SETB AJMP

MOVX SUBB XRL MOV SJMP

PUSH INC CLR JC JZ

POP DEC CPL JNC JNZ

XCH MUL RL JB CJNE

XCHD DIV RLC JNB DJNZ

 DA A RR JBC NOP

 RRC ANL LCALL

 SWAP ORL ACALL

 CPL RET

 RETI

 JMP

Table 4.3

12

A simple instruction consists of just the opcode. Other instructions may include one or more

operands. Instruction can be one-byte instruction, which contains only opcode, or two-byte

instructions, where the second byte is the operand or three byte instructions, where the operand

makes up the second and third byte.

Based on the operation they perform, all the instructions in the 8051 Microcontroller Instruction

Set are divided into five groups. They are:

• Data Transfer Instructions

• Arithmetic Instructions

• Logical Instructions

• Boolean or Bit Manipulation Instructions

• Program Branching Instructions

We will now see about these instructions briefly.

Data Transfer Instructions

The Data Transfer Instructions are associated with transfer with data between registers or

external program memory or external data memory. The Mnemonics associated with Data

Transfer are given below.

• MOV

• MOVC

• MOVX

• PUSH

• POP

• XCH

• XCHD

The following table lists out all the possible data transfer instruction along with other details like

addressing mode, size occupied and number machine cycles it takes.

13

Table 4.4

Arithmetic Instructions

Using Arithmetic Instructions, you can perform addition, subtraction, multiplication and

division. The arithmetic instructions also include increment by one, decrement by one and a

special instruction called Decimal Adjust Accumulator.

The Mnemonics associated with the Arithmetic Instructions of the 8051 Microcontroller

Instruction Set are:

• ADD

• ADDC

• SUBB

• INC

• DEC

14

• MUL

• DIV

• DAA

The arithmetic instructions has no knowledge about the data format i.e. signed, unsigned, ASCII,

BCD, etc. Also, the operations performed by the arithmetic instructions affect flags like carry,

overflow, zero, etc. in the PSW Register.

All the possible Mnemonics associated with Arithmetic Instructions are mentioned in the

following table.

Table 4.5

Logical Instructions

15

The next group of instructions are the Logical Instructions, which perform logical operations like

AND, OR, XOR, NOT, Rotate, Clear and Swap. Logical Instruction are performed on Bytes of

data on a bit-by-bit basis.

Mnemonics associated with Logical Instructions are as follows:

• ANL

• ORL

• XRL

• CLR

• CPL

• RL

• RLC

• RR

• RRC

• SWAP

The following table shows all the possible Mnemonics of the Logical Instructions.

Table 4.6

Boolean or Bit Manipulation Instructions

16

As the name suggests, Boolean or Bit Manipulation Instructions will deal with bit variables. We

know that there is a special bit-addressable area in the RAM and some of the Special Function

Registers (SFRs) are also bit addressable.

The Mnemonics corresponding to the Boolean or Bit Manipulation instructions are:

• CLR

• SETB

• MOV

• JC

• JNC

• JB

• JNB

• JBC

• ANL

• ORL

• CPL

These instructions can perform set, clear, and, or, complement etc. at bit level. All the possible

mnemoics of the Boolean Instructions are specified in the following table.

Table 4.7

Program Branching Instructions

17

The last group of instructions in the 8051 Microcontroller Instruction Set are the Program

Branching Instructions. These instructions control the flow of program logic. The mnemonics of

the Program Branching Instructions are as follows.

• LJMP

• AJMP

• SJMP

• JZ

• JNZ

• CJNE

• DJNZ

• NOP

• LCALL

• ACALL

• RET

• RETI

• JMP

All these instructions, except the NOP (No Operation) affect the Program Counter (PC) in one

way or other. Some of these instructions has decision making capability before transferring

control to other part of the program.

The following table shows all the mnemonics with respect to the program branching

instructions.

18

LECTURE 4: ADDRESSING MODES OF 8051

1.8051 ADDRESSING MODES

What is an Addressing Mode?

An Addressing Mode is a way to locate a target Data, which is also called as Operand. The 8051

Family of Microcontrollers allows five types of Addressing Modes for addressing the Operands.

They are:

• Immediate Addressing

• Register Addressing

• Direct Addressing

• Register – Indirect Addressing

• Indexed Addressing

Immediate Addressing

In Immediate Addressing mode, the operand, which follows the Opcode, is a constant data of

either 8 or 16 bits. The name Immediate Addressing came from the fact that the constant data to

be stored in the memory immediately follows the Opcode.

The constant value to be stored is specified in the instruction itself rather than taking from a

register. The destination register to which the constant data must be copied should be the same

size as the operand mentioned in the instruction.

Example: MOV A, #030H

Here, the Accumulator is loaded with 30 (hexadecimal). The # in the operand indicates that it is a

data and not the address of a Register.

Immediate Addressing is very fast as the data to be loaded is given in the instruction itself.

Register Addressing

In the 8051 Microcontroller Memory Organization Tutorial, we have seen the organization of

RAM and four banks of Working Registers with eight Registers in each bank.

In Register Addressing mode, one of the eight registers (R0 – R7) is specified as Operand in the

Instruction.

It is important to select the appropriate Bank with the help of PSW Register. Let us see a

example of Register Addressing assuming that Bank0 is selected.

Example: MOV A, R5

Here, the 8-bit content of the Register R5 of Bank0 is moved to the Accumulator.

Direct Addressing

In Direct Addressing Mode, the address of the data is specified as the Operand in the instruction.

Using Direct Addressing Mode, we can access any register or on-chip variable. This includes

general purpose RAM, SFRs, I/O Ports, Control registers.

Example: MOV A, 47H

Here, the data in the RAM location 47H is moved to the Accumulator.

Register Indirect Addressing

In the Indirect Addressing Mode or Register Indirect Addressing Mode, the address of the

Operand is specified as the content of a Register. This will be clearer with an example.

Example: MOV A, @R1

19

The @ symbol indicates that the addressing mode is indirect. If the contents of R1 is 56H, for

example, then the operand is in the internal RAM location 56H. If the contents of the RAM

location 56H is 24H, then 24H is moved into accumulator.

Only R0 and R1 are allowed in Indirect Addressing Mode. These register in the indirect

addressing mode are called as Pointer registers.

Indexed Addressing Mode

With Indexed Addressing Mode, the effective address of the Operand is the sum of a base

register and an offset register. The Base Register can be either Data Pointer (DPTR) or Program

Counter (PC) while the Offset register is the Accumulator (A).

In Indexed Addressing Mode, only MOVC and JMP instructions can be used. Indexed

Addressing Mode is useful when retrieving data from look-up tables.

Example: MOVC A, @A+DPTR

Here, the address for the operand is the sum of contents of DPTR and Accumulator.

Types of Instructions in 8051 Microcontroller Instruction Set

Before seeing the types of instructions, let us see the structure of the 8051 Microcontroller

Instruction. An 8051 Instruction consists of an Opcode (short of Operation – Code) followed by

Operand(s) of size Zero Byte, One Byte or Two Bytes.

The Op-Code part of the instruction contains the Mnemonic, which specifies the type of

operation to be performed. All Mnemonics or the Opcode part of the instruction are of One Byte

size.

Coming to the Operand part of the instruction, it defines the data being processed by the

instructions. The operand can be any of the following:

• No Operand

• Data value

• I/O Port

• Memory Location

• CPU register

There can multiple operands and the format of instruction is as follows:

• Module 7: Support IC chips
• Topic:

• Introduction to Programmable Peripheral Interface

device -8255

• Programmable Peripheral Interface

• Architecture of Intel 8255A

• Session objective: To discuss about peripheral device

Session outcome: Students will know about PPI 8255

Programmable Peripheral Interface
(PPI)

• A Programmable Peripheral Interface is a multiport device.
The ports may be programmed in a verity of ways as required
by the programmer. The device is very useful for interfacing
peripheral devices the term PIA, peripheral Interface Adapter
is also used by some manufacturer.

• INTEL 8255
• The Intel 8255 is a Programmable Peripheral Interface (PPI). It

has two versions, namely Intel 8255A and Intel 8255A-5.

Intel 8255A

Architecture of Intel 8255A
Intel 8255A is a 40 pin I. C. Package. It operates on a single 5 Vdc supply. Its
important characteristics are as follows:

Architect
ure of

8255 PPI

Content:
• Different Mode of operation -INTEL-8255

• Session objective: To discuss about Mode of

operation -INTEL-8255

• Session outcome: Students will know about Mode of

operation -INTEL-8255 PPI 8255

Modes of Operation of 8255 PPI

• 8255 has two modes of operation. These are as follows:
• Bit Set-Reset mode: When port C is utilized for control or

status operation, then by sending an OUT instruction, each
individual bit of port C can be set or reset.

• I/O mode: As we know that the I/ O mode is sub-classified
into 3 modes. So, let us now discuss the 3 modes here.

• Mode 0: Input/Output mode
• This mode is the simple input output mode of 8255 which

allows the programming of each port as either input or
output port.

• The input/output feature of mode 0 includes:
• It does not support handshaking or interrupt capability.
• The input ports are buffered while outputs are latched.

• Mode 1: Input/output with handshaking

• Mode 1 of 8255 supports handshaking with the ports programmed as
either input or output mode. We know that it is not necessary that all the
time the data is transferred between two devices operating at same
speed. So, handshaking signals are used to synchronize the data transfer
between two devices that operates at different speeds.

• The figure below shows the data transferring between CPU and an output
device having different operating speeds:

Here STB signal is used to inform the output
device that data is available on the data bus by
the processor.
Here port A and port B can be separately
configured as either input or output port.
Both the port utilizes 3-3 lines of port C for
handshaking signals. The rest two lines
operates as input/output port.
It supports interrupt logic.
The data at the input or output ports are
latched.

• Mode 2: Bidirectional I/O port with handshaking

• In this mode, the ports can be utilized for the bidirectional
flow of information by handshaking signals. The pins of group
A can be programmed to acts as bidirectional data bus and
the port C upper (PC7 – PC4) are used by the handshaking
signal. The rest 4 lower port C bits are utilized for I/O
operations.

• As the data bus exhibits bidirectional nature thus when the
peripheral device request for a data input only then the
processor load the data in the data bus. Port B can be
programmed in mode 0 and 1. And in mode 1 the lower bits
of port C of group B are used for handshaking signals.

Content:
• Mode 0 operation of INTEL 8255

• Session objective: To discuss about Mode 0
operation of INTEL 8255

• Session outcome: Students will know about Mode 0
operation of INTEL 8255

INTEL 8255 operation

BSR (Bit Set/ Reset) mode

Dr. Debasree Saha

Email : debasree.saha@gnit.ac.in

Ph: 7005338712

	EE 601_front page.pdf
	EE 601 _ocw
	8085.pdf
	mpmc lec1_intro.pdf
	Slide 1
	Slide 2
	Slide 3: Course Content
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Introduction to Microcomputer based system
	Slide 9
	Slide 10
	Slide 11: Introduction to Microcomputer based system
	Slide 12: Quiz time
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: INTEL 4004
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Advantages and disadvantages of Microprocessor and Microcontrollers
	Slide 36
	Slide 37

	mpmc lec3
	Slide 1
	Slide 2
	Slide 3: Pin Diagram of 8085
	Slide 4: Functions of various Pins of 8085
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Instruction Fetch operation
	Slide 11: A Microcomputer system
	Slide 12
	Slide 13

	mpmc lec5N_int arc
	Slide 1
	Slide 2
	Slide 3: Internal architecture of 8085 microprocessor
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: 8085 bus structure
	Slide 9
	Slide 10
	Slide 11
	Slide 12

	mpmc lec 8
	Slide 1
	Slide 2
	Slide 3: ADDRESSING MODES OF 8085
	Slide 4
	Slide 5
	Slide 6: Opcode and Operand
	Slide 7: One byte instruction
	Slide 8: Two byte instruction
	Slide 9: Three byte instruction
	Slide 10
	Slide 11: Instruction Fetch operation
	Slide 12: A Microcomputer system
	Slide 13
	Slide 14

	mpmc lec 8N_instruction set
	Slide 1
	Slide 2
	Slide 3: INSTRUCTION SET OF INTEL 8085
	Slide 4: Data Transfer Group
	Slide 5: Arithmetic Group
	Slide 6: I/O and Machine Control Group
	Slide 7: Data Transfer Group
	Slide 8: 2. Arithmetic Group
	Slide 9
	Slide 10: DAA (Decimal adjust accumulator)
	Slide 11

	mpmc lec 9N_instruc_ii
	Slide 1
	Slide 2
	Slide 3: INSTRUCTION SET OF INTEL 8085
	Slide 4: Logical Group
	Slide 5
	Slide 6
	Slide 7: 4. Branch Group
	Slide 8
	Slide 9: 5. Stack, I/O and Machine Control Group
	Slide 10

	mpmc lec 11
	Slide 1
	Slide 2
	Slide 3: Instruction cycle
	Slide 4: Fetch Operation
	Slide 5: Execute Operation
	Slide 6: Machine Cycle
	Slide 7
	Slide 8
	Slide 9: 1.Opcode fetch machine cycle of 8085 :
	Slide 10: 2. Memory Read Machine Cycle of 8085:
	Slide 11: 3. Memory Write Machine Cycle of 8085
	Slide 12: 4. I/O Read Cycle of 8085
	Slide 13: Timing diagram for STA 526AH
	Slide 14: STA means Store Accumulator -The contents of the accumulator is stored in the specified address (526A). The opcode of the STA instruction is said to be 32H. It is fetched from the memory 41FFH (see fig). - OF machine cycle Then the lower order
	Slide 15: 3. Timing diagram for INR M
	Slide 16: Instruction Fetch operation
	Slide 17

	mpmc lec 12N_8085_interrupt
	Slide 1
	Slide 2
	Slide 3: 8085 interrupt structure and operation
	Slide 4: Hardware interrupts in 8085
	Slide 5: Interrupt structure of 8085
	Slide 6: TRAP
	Slide 7
	Slide 8: INTR
	Slide 9: Summary of hardware interrupts
	Slide 10: Software interrupts in 8085
	Slide 11: Masking and unmasking of Interrupts
	Slide 12
	Slide 13: Accumulator content for SIM
	Slide 14
	Slide 15
	Slide 16

	mpmc lec16n_8255-1
	Slide 1
	Slide 2
	Slide 3: Programmable Peripheral Interface (PPI)
	Slide 4: Intel 8255A
	Slide 5: Architecture of Intel 8255A
	Slide 6
	Slide 7: Architecture of 8255 PPI
	Slide 8
	Slide 9
	Slide 10

	mpmc lec 8255_2
	Slide 1
	Slide 2
	Slide 3: Modes of Operation of 8255 PPI
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	mpmc lec_8255-3
	Slide 1
	Slide 2
	Slide 3: INTEL 8255 operation
	Slide 4
	Slide 5:
	Slide 6
	Slide 7
	Slide 8: BSR (Bit Set/ Reset) mode
	Slide 9
	Slide 10
	Slide 11

	OCW _ - 8086
	OCW _ 8051
	mpmc lec16n_8255-1
	Slide 1
	Slide 2
	Slide 3: Programmable Peripheral Interface (PPI)
	Slide 4: Intel 8255A
	Slide 5: Architecture of Intel 8255A
	Slide 6
	Slide 7: Architecture of 8255 PPI
	Slide 8
	Slide 9
	Slide 10

	mpmc lec 8255_2
	Slide 1
	Slide 2
	Slide 3: Modes of Operation of 8255 PPI
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	mpmc lec_8255-3
	Slide 1
	Slide 2
	Slide 3: INTEL 8255 operation
	Slide 4
	Slide 5:
	Slide 6
	Slide 7
	Slide 8: BSR (Bit Set/ Reset) mode
	Slide 9
	Slide 10
	Slide 11

