Microprocessor and \

Microcontroller
(EE 601)

Online Courseware (OCW)

B.TECH (3" YEAR — 6t SEM)

Prepared by: Dr. Debasree saha

Department of Electrical Engineering

Guru Nanak Institute of Technology
(Affiliated to MAKUT, West Bengal , Approved by AICTE - Accredited by NAAC — A+’ Grade)
157/F Nilgunj road, Panihati, Kolkata-700114, West Bengal

https://gnit.ac.in/
https://gnit.ac.in/

JiS Microprocessor and Microcontroller

GNIiT
Contacts: 3L Total Contact Hours: 36
Credits: 3 (50 minutes/lecture)

Pre requisites:
Knowledge in Digital Electronics.

Course Outcomes (COs):
On completion of the course students will be

COl. Able to correlate the architecture, instructions, timing diagrams, addressing
modes, memory interfacing, interrupts, data communication of 8085.

CO2. Able to interpret the 8086 microprocessor-Architecture, Pin details, memory
segmentation, addressing modes, basic instructions, interrupts.

CO3. Recognize 8051 micro controller hardware, input/output pins, ports, external
memory, counters and timers, instruction set, addressing modes, serial data i/o,
Interrupts.

CO4. Apply instructions for assembly language programs of 8085, 8086 and 8051.

CO5. Design peripheral interfacing model using IC 8255, 8253, 8251 with IC 8085,
8086 and 8051.

L]

JIS Course Content GINiT

JIS GROUP

Educational Initiatives

Module 1: 8085 Microprocessor [6]

Introduction to Microcomputer based system, Evolution of Microprocessor and
microcontrollers and their advantages and disadvantages, Architecture of 8085
Microprocessor, Address / Data Bus multiplexing and demultiplexing, Status and Control
signal generation, Instruction set of 8085 Microprocessor, Classification of instructions,
addressing modes, timing diagram of the instructions, Memory interfacing , 10
interfacing, ADC / DAC interfacing, Stack and Subroutine, Delay Calculation, Interrupts
of 8085 processor, classification of interrupts, Serial and parallel data transfer — Basic
concept of serial 1/0, DMA, Asynchronous and synchronous serial transmission using
SID and SOD pins of 8085.

Module 2: Assembly language programming with 8085 [2]

Addition, Subtraction, Multiplication, Block Transfer, ascending order, descending order,
Finding largest & smallest number, Look-up table etc. Programming using interrupts
(programming using INTR is not required).

Module 3: 8086 Microprocessor [8]

8086 Architecture, Pin details, memory segmentation, addressing modes, Familiarization
of basic Instructions, Interrupts & Direct Memory Access, Memory interfacing, ADC /
DAC interfacing.

L]

JIS GINIT

JIS GROUP

Educational Initiatives

Module 4: Assembly language programming with 8086 [3]

Addition, Subtraction, Multiplication, Block, Transfer, ascending order, descending order,
Finding largest & smallest number etc.

Module 5: 8051 Microcontroller [7]

8051 architecture, hardware, input/output pins, ports, internal and external memory,
counters and timers, instruction set, addressing modes, serial data i/o, interrupts, Memory
interfacing, ADC / DAC interfacing.

Module 6: Assembly language Programming using 8051 [4]

Moving data: External data moves, code memory read only data moves, PUSH and POP
opcodes, data exchanges; Logical operations: Byte-level, bit-level, rotate and swap
operations; Arithmetic operations: Flags, incrementing and decrementing, addition,
subtraction, multiplication and division, decimal arithmetic; Jump and call instructions:
Jump and call program range, jumps, calls and subroutines, interrupts and returns.

Module 7: Support IC chips [6]

8255, 8253 and 8251: Block Diagram, Pin Details, Modes of operation, control word(s)
format. Interfacing of support IC chips with 8085, 8086 and 8051.

-

JIS GINIT

JIS GROUP

Educational Initiatives

Text Books:

1. Microprocessor architecture, programming and application with 8085 — R.
Gaonkar, Penram International

2. The 8051 microcontroller - K. Ayala, Thomson
3. Microprocessors & interfacing — D. V. Hall, Tata McGraw-hill
4. Ray & Bhurchandi, Advanced Microprocessors & Peripherals, TMH

5. The 8051 microcontroller and Embedded systems - Mazidi, Mazidi and
McKinley, Pearson

6. An Introduction to Microprocessor and Applications —Krishna Kant,Macmillan

Reference Books:

1. Microprocessors and microcontrollers - N. Senthil Kumar, M. Saravanan and
Jeevananthan, Oxford university press

2. 8086 Microprocessor —K Ayala, Cengage learning
3. The 8051 microcontrollers — Uma Rao and Andhe Pallavi, Pearson

JiS GNIT

JIS GROUP
Educational Initiatives

CO-PO Mapping:

COs | PO1 [PO2 | PO3 | PO4 | POS | PO6 | POT7 | POS | PO9 | POI10 | PO11 | POI2
cor|{ 3 | 3| 3 (1 (3 1| 1 17]1 | l 3
coz(3 | 3| 313 1|1 17]1 | | 3
co3(3 | 3| 333 221711 | 2 3
co4| 3 (3 | 3 3 3] 212 1]1 2 l 3
cos|{ 3 | 3| 3 (3 (3 [1| 21]°72 2 2 3

JIS

JIS GROUP

Educational Initiatives

GNIiT

Introduction to Microcomputer based system

Educational Initiatives

The microprocessor is one of the most important components of a digital computer. It acts
as the brain of a computer system. Computer are of two types: digital computer and
analog computers. A digital computer makes processing of numbers. An analog computer
process analog signals. An analog signal is a continuous signal. Now-a-days computers
which are commonly used are digital computers. Analog computers have specific
applications. They are used for some specific scientific and engineering purposes. Earlier,
they were used to study, analyze and simulate scientific and engineering systems. Today
these works are done by digital computers.

computers are the most powerful tool man has ever created. A digital computer
is a programmable machine. Its main components are: CPU, memory, input device and
output device.

DEVICE |———/ 22 DEVICE

|

MEMORY

Schematic diagram of a digital computer

JIS GNIT

EEEEEEEE

' The CPU executes instructions. The input device is used to feed programs and data to the com-
puter. The memory is a storage device. It stores programs, dsfta and }'esulf. The output device dis-
plays or prints programs, dataand/or resuilts aCCUI'dLE‘tg to the mstructlo-n gwen to the cqmputer. The
central processing unit built onasingle ICis called MiCroprocessor. Adigital computer in which one
Microprocessor has been provided to act as a CPU, is called microcomputer. A desktop computer
and portable (or mobile) computers like laptop, notebook, palmtop, etc. contain one MICTOProcessor
to act as a CPU and hence they come under the category of microcomputer. A schematic dia gram of
3 microcomputer is shown in Fig. The CPU of a large powerful digital computer contains more
th{:m one microprocessor. High-end powerful servers, supercomputers, etc. contain more than one
microprocessor to act as CPU. These microprocessors placedina CPU of a large powerful computer

operate in parallel. A computer whose CPU contains more than one microprocessor is called a
multiprocessor computer system.

INPUT ouT |
DEVICE) MICROPROCESSORS p DEV’:’CUET

Il

MEMORY

Schematic diagram of a microcomputer

GNIT

* A digital computer was developed for complex scientific and
engineering calculations and it was a programmable machine.
Hence, a computer was defined as a “programmable computing
machine”. Today, besides computation work computers are
used for a number of noncomputational work such as
automatic control of industrial equipment, to control process,
to measure physical and electrical quantities, to process text,
graphics and image; to store information, to display
information, to transmit information from one place to another,
to receive information and so on. In the light of such
developments, a computer now can be defined as
programmable machine which can make calculations,
manipulate, measure, store, display information; control
process, equipment, machine and appliances, transmit and
receive information and so on.

J($

JIS GROUP

Educational Initiatives

A microprocessor is a multipurpose, programmable, clock-driven, register-based electronic
device that reads binary instructions from a storage device called memory, accepts binary
data as input and processes data according to those instructions, and provides results as out-
put. Ata very elementary level, we can draw an analogy between microprocessor operations
and the functions of a human brain that process information according to instructions (un-
derstanding) stored in its memory. The brain gets input from eyes and ears and sends
processed information to output “devices” such as the face with its capacity to register ex-
pression, the hands or feet. However, there is no comparison between the complexity of a hu-
man brain and its memory and the relative simplicity of a microprocessor and its memory.

JS
L, GNIT

JIS GROUP
Educational Initiatives

Evolution of Microprocessor

 First generation (1889-1954) -vacuum tube

The Electrical age: -Hollerith machine(1889)
-ENIAC(Electronics Numerical Integrator & Calculator)

-first general-purpose. programmable electronic computer
-17.000 vacuum tube. 500 miles of wire., 6000 switches
-life of vacuum tube(3000 hours} .BMa%‘T:’tganl?c%%roblem

b 4

JIS GNIT

JIS GROUP
Educational Initiatives

/EI Second generation (1954-1959) -transistor \

Bipolar Transistor : 1948, William Shockley, John Bardeen,
Walter H. Brattain at Bell labs(1956, Novel physics award)
Mainframe : describe CPU portion of computer
Mainframe computer : designed to handle large volumes of
data while serving hundreds of users simultaneously

Built on circuit boards mounted into rack panels(frame)

b 4

J1S GROUP GN-iT

[Q_Third generation (1959-1971) - IC

- Integrated Circuit : 1958 Jack Kilby (Texas Instruments)
& Dr. Robert Noyce (Fairchild Semiconductor).

- IBM : 32-bit 360 series(1964)

- INTEL(Integrated Electronics) : 1968

/

PDP-8, Digital Equipment Corporation

— Thanks to the use of ICs, the DEC PDP-8
is the least expensive general purpose small
computer in 1960s

\"S — ~ GNIT

4- Bit processor-

MCS-4 Family - 4004 (used in calculator),

4001, 4002,4003,4008,4009

MCS-40 Family- 4040, 4101,4207,4209 etc.
8- Bit processor- 80083,80380,8085 etc
16- Bit processor- 8086,8088,80186,80286 etc.
32- Bit processor- 80386DX, 80386SX, 80376,pentium

Pentium pro, Il, etc.

64- Bit processor- Intel Pentium, core i3, core

\ i5.core i7 .etc j

IIN' r 4004

Year of Introduction -

N T 8008

Year of In tructzo

JIS GROUP
Educational Initiatives

INTEL 8080

MOS technology
- Drawbacks was that it needs three power supplies.

- Small companies (microcomputers) were designed in mid 1970s using
8080 as CPL

JS

JIS GROUP
Ed

INTEL 8085

Year of Introduction:-

Emicr oprocessor- upgrading version of 8080.

JIS GROUP
Educational Initiatives

T E B B

_8086/8088

Year of introduction:- 197

JIS GROUP
Educational Initiatives

. C80186-6

| § 540143
14370013
@INTEL ‘82 R

N
-

AN

for systems for systems that required a minimum of

o

~
o

;

dIE BRUUF‘

“‘Jr 80286

Year of Introductzo

rocessor

clude page handling in virtual environment
ware circuitry for memory management and memory

ng and enhanced I/O permissions

80486

JIS GROUP
Educational Initiatives

Year of Introduction:-

80387 like floating point coprocessors
cache on one package

alf of the instructions executed in 1 clock instead of 2 on

J($

JIS EREILIF'

N T =

er processor
ersion is the 233MHz
ache (split instruction and data: 8KB each)

S

J1S GROU F'
Educational Initiative

NTE, ENTIUM PRO

Year of Introduction:-

ode-named P6
d 36 bit address bus

JIS

JIS GROUP
Educational Initiatives

NTEL PENTIUM II

Year of I ntroductzon
7 64 bus and 36 bit address bus

éﬁOn /data L1 cache (16 KB each)
orated 512KB L2 cache (1332\/IHz)
2 called Xeon; specifically designed for high-end

JI$

JIS GROUP

Year of Introduction:-
cessor data bus and 36 bit address bus

|JIE ERUUF‘

INT ENTIUM IV

t data bus and 36 bit address bus

Hzand 3.46Ghz (Hyper-

- Hz and the latest at 3.2G

GNIiT

JIS GROUP

Educational Initiatives

VIEBDUAL CORE /CORE 2 DUC

JIS GROUP

Educational Initiatives

INTELLCORE 13

it microprocessor
dual core chip , and it is quite a big improvement over the

JI$

JIS ERI:ILIF'
Educational Ini

Ye‘r "f Introd: Cth
it/64 bit microprocessor
the oppormnlty to = ".3’{ 's 10 11Se the System zvith

- Technology if i5 processors is the key beneficial features
ors that allows the user to do their reqular and
orking with the help of heavy applications.

Htghf speed performance rate so they are able to perform at the
maximum CPU rate of 3.6GHz .

J($

JIS GROUP ERI:ILIF'
Educational Initiative:

ere deszgned to meet the challenges of the intelligent and
working performance of the computer system.

loanced to deals with the integrated memory of the
have ability to increase the memory up to 1066 M bits
ide the working speed of 25.6 GB/sec

JIS _ : GNIT
s=sece Evolution of Intel Microprocessors

Number of transistors Minimum transistor sizes (um)
100,000,000 7
: - PTI 8080
10,000,000 Pentium _ 6 —l\
1,000,000 5 -
- 80286 N
10,000 P | \ 8088
8080 3
e 2 80386
e : B—B___ Pentium
0 P4
1 0 ._
1974 1970 1932 1085 1939 1903 1997 1000 2000 1974 1979 1982 1985 1969 1933 1997 193¢ 2000

Clock frequencies (MHz)

10000

P4
p_

1000

J/Pil/l/
2 Pentiun Pl
2 8088

8080
80286

1974 1979 1882 1985 16830 1803 1807 1800 2000

J(S Advantages and disadvantages of GINIT

JIS GROUP

Microprocessor and Microcontrollers

There are some advantages of microprocessor are given below,

Microprocessor are general purpose electronic processing devices
which can be programmed to execute a number of tasks.

 Speed of Microprocessor is measured in hertz. For instance, a
microprocessor with 3 GHz, shortly GHz is capable of performing 3
billion tasks per second.

 Microprocessor is that which can quickly move data between the
various memory locations.

 There are some disadvantages of microprocessor are given below,
 The microprocessor has a limitation on the size of data.

* Most of the microprocessor does not support floating point
operations.

 The main disadvantage is it’s over heating physically.
* [t should not contact with the other external devices.

* The microprocessor does not have any internal peripheral like ROM,
RAM and other I/O devices.

http://www.polytechnichub.com/advantages-disadvantages-microprocessor/
http://www.polytechnichub.com/what-is-a-microprocessor/

JIS

JIS GROUP

Educational Initiatives

Pin Diagram
of 8085

AD¢-AD:;

e

RESET OUT €—

e VCC
l€— HOLD

3 HLDA
3 CLK (OUT)

A:x-Ag

Functions of various Pins of 8085

A8-A15 Higher Order Address bus:
These are o/p tri-state (a state of high impedance) signals used as higher
order 8 bits of 16 bit address.

These signals are unidirectional and are given from 8085 to select memory or
|/O devices.

ADO-AD7 Multiplexed Address/Data bus:

These are |/0 tri-state signals, having 2 sets of signals. They are address and
data.

The lower 8 bit of 16 bit address is multiplexed/time shared with data bus.

Address latch Enable(ALE):

It is an output signal used to give information of ADO-AD7 contents.

It is a positive going pulse generated when a new operation is started by
microprocessor.

When pulse goes high it indicates that ADO-AD7 lines are address.
When it is low it indicates that the contents are data.

10/M(bar):

This is an output status signal used to give info of operation to be performed
with memory or I/O devices.

When = 0, the microprocessor is performing memory related operation.
When = 1, the microprocessor is performing I/O device related operation.
This signal separates memory and I/O devices.

» Status signals(S0 and S1):
These are output status signals used to give information of operation performed by
microprocessor.
The SO and S1 lines specify 4 different conditions of 8085 machine cycles.

Operation S0 || 81
Opcode fetchiinstructon read from memory) || 1 1
Readidata read from memory) i 1
Write 1 o
Halt 0 0

» Read: This is an active low output control signal used to read data from memory or
an 1/0 device.

» Write: This is an active low output signal used to write data to memory or an I/O
device.

» Ready: This is an active high input control signal. It is used by microprocessor to
detect whether a peripheral has completed (or is Ready for) the data transfer or not.
The main function of this pin is to synchronize slower peripheral to faster
microprocessor.

If ready pin is high the microprocessor will complete the operation and proceeds for
the next operation. If ready pin is low the microprocessor will wait until it goes high.

Trap:
This is an active high, level and edge triggered, non-maskable higher priority
interrupt.

When TRAP is active, the program counter of pp jumps automatically at address
0024.

RST 7.5,RST 6.5 and RST 5.5:

These are active high, edge (RST 7.5) or level (RST 6.5 and RST 5.5) triggered
maskable interrupts.

The priorities of these are TRAP, RST 7.5, RST 6.5, and RST 5.5.

When RST 7.5, RST 6.5 and RST 5.5 are active, the program counter jumps
automatically at address 003C, 0034, 002C respectively.

INTR and INTA(Bar):

INTR is an active high, level triggered general purpose interrupt.

When INTR is active pup generates an interrupt acknowledge signal.

If INTR is active, the Program Counter (PC) will be restricted from incrementing
and an will be issued.

During This cycle a RESTART or CALL instruction can be inserted to jump to the
interrupt Service routine.

The INTR is enabled and disabled by software. It is disabled by Reset and
immediately after an interrupt is accepted.

HOLD:

HOLD indicates that another Master is requesting the use of the Address and Data
Buses.

The CPU, upon receiving the Hold request, will withdraw the use of buses as soon
as the completion of the current machine cycle. Internal processing can continue.
The processor can regain the buses only after the Hold is removed.

When the Hold is acknowledged, the Address, Data, RD, WR, and I0/M lines are
tri-stated.

HLDA:

HOLD ACKNOWLEDGE indicates that the CPU has received the Hold request and
that it will withdraw the buses in the next clock cycle.

HLDA goes low after the Hold Request is removed.

The CPU takes the buses one half clock cycles after HLDA goes Low.

Reset IN(Bar):

Reset sets the Program Counter to zero and resets the Interrupt Enable and HLDA
Flip-flops and makes address, data and control lines tri-stated.

The CPU is held in the reset condition as long as Reset is applied.

After reset status internal register and flag are unpredictable.

After reset microprocessor starts executing from instruction from 0000H onwards.

RESET OUT:

This is an active high output signal used to indicate CPU is being reset and can be used as
a system RESET. The signal is synchronized to the processor clock.

This signal is also used to reset the peripherals once the pP is reset.

It is an acknowledgement signal to RESET IN (bar).

Serial input data(SID):

This is an active high Serial input data line the data on this line is loaded into accumulator
bit 7 whenever a RIM instruction is executed.

Serial output data(SOD):

This is an active high Serial output data line.

The output SOD is set or reset as specified by the SIM instruction.

X1,X2:

Crystal or R/C network connections to set the internal clock generator X1 can also be an
external clock input instead of a crystal.

The input frequency is divided by 2 to give the internal operating frequency as shown in

fig.

Piezo Electric Crystal X.

8

I_I \\T 3.07 MHz 0

Crystalfrequency

Operating Frequency

e CLKOUT:
Clock Output for use as a system clock when a crystal or R/ C network is used as an
Input to the CPU.
Clock input to all other peripherals is provided through CLK OUT pin.
The period of CLK is twice the X1, X2 input period.

X CLKOUT

3.07MHz 0 4 External

- —
6.14 MHz 8 ICs

X

VCC and VSS:
+5 volt supply and Ground Reference.

Ag High-Order Address Bus

Input

Output

D,
Control D,

10W

JIS

JIS GROUP

Educational Initiatives

JIS GROUP

" Internal architecture of 8085 microprocessor

INT RST6.5 TRAP

|N1ﬁ n515_5l HSI ?.51 Sl':' 5?':'

Interrupt control Serial [/O control
Py -HI'“H- A

Iyt

B-Bit Intemal data bus

| N I 7

GNIT

B G
REG REG
Temp Flag Instruction |ge O C
Accumulator reg flip-flops register REG REG
H L
: REG REG
L L? + T # ‘Ji Stack pointer
: —1} Arithrmetic Instruction s Program counter
logic decoder and)
:} unit maching |uge Incrementer;
(ALY cycle decrementern
' encoding address latch
Xz X GND +5V
L]
I T)
- e
1 Addre ss/
CLK H AddTess Data
GEN Control Status Dha, Reset buffer

T O T T T T A

CLKGEN READY RD WRALE S, S,I10M HOLD HLDA RESET INRESETOUT A T A, AD, - AD,

Architecture of B0ES

uuuuuuuu

GNIT

« The ALU performs the actual numerical and logic operation such as ‘add’, ‘subtract’, ‘AND’, ‘OR’ etc.

» Uses data from memory and from Accumulator to perform arithmetic operation and always stores

result of operation in Accumulator.

» The ALU consists of accumulator, flag register and temporary register.

a. Accumulator

o The accumulator is an 8-bit register that is a part of arithmetic/logic unit (ALU). This register is used
to store 8-bit data and to perform arithmetic and logical operations. The result of an operation is

stored in the accumulator.

» The accumulator is also identified as register A.

b. Flag register

» 8085 has 8-bit flag register. There are only 5 active flags.

S

Z

AC

CY

Fig: 8085 flag register

» Flags are flip-flops which are used to indicate the status of the accumulator and other register after

the completion of operation.

« These flip-flops are set or reset according to the data condition of the result in the accumulator and
other registers.

uuuuuuuu

1. Sign flag(S):

GNIT

» Sign flag indicates whether the result of a mathematical or logical operation is negative or positive.
» If the result is negative, this flag will be set (i.e. S=1) and if the result is positive, the flag will be reset
(l.e. S=0).
i1. Zero flag (Z):

» Zero flag indicates whether the result of a mathematical or logical operation is zero or not.

» If the result of current operation is zero, the flag will be set (i.e. Z=1) otherwise the flag will be reset
(Z=0).

» This flag will be modified by the result in the accumulator as well as in the other register.
iii. Auxiliary carry flag (AC):
» In operation when a carry is generated by bit D3 and passes on to bit D4, the AC flag will be set
otherwise AC flag will be reset.

« This flag is used only internally for BCD operation and is not available for the programmer to change
the sequence of program with the jump instruction.

iv. Parity flag (P):
» This flag indicates whether the current result is of even parity (no. of 1’s is even) or odd parity (no. of
1’s is odd).
« If even parity, P flag will be set otherwise reset.
v. Carry flag (CY):

» This flag indicates whether during an addition or subtraction operation carry or borrow is generated
or not.

» If carry or borrow is generated, the flag will be set otherwise reset.

ssssssss

2. Timing and control unit GNIT

« This unit produces all the timing and control signal for all the operation.
« This unit synchronizes all the MP operations with the clock and generates the control signals

necessary for communication between the MP and peripherals.

3. Instruction register and decoder
« The instruction register and decoder are part of ALU. When an instruction is fetched from memory,
it is loaded in the instruction register.
« The decoder decodes the instruction and establishes the sequence of events to follow.
« The IR is not programmable and cannot be accessed through any instruction.
4. Register array
» The register unit of 8085 consists of
-Six general-purpose data registers B,C.D.E,H.L
-Two internal registers W and Z
-Two 16-bit address registers PC (program counter) and SP (stack pointer)

-One increment/decrement counter register
-And, one multiplexer (MUX)

« The six general-purpose registers are used to store 8-bit data. They can be combined as register pairs
BC, DE, and HL to perform some 16-bit operations.

» The two internal registers W and Z are used to hold 8-bit data during the execution of some
instructions. CALL and XCHG instructions.

« SP is 16-bit registers used to point the address of data stored in the stack memeory. It always indicates
the top of the stack.

ssssssss

: GNIT
5. System bus

a. Data bus

« It carries ‘data’, in binary form, between MP and other external units. such as memory.
» Typical size is 8 or 16 bits,

b. Address bus

It carries ‘address’ of operand in binary form.
» Tyvpical size is 16-bit.
c¢. Control Bus
« Control Bus are various lines which have specific functions for coordinating and controlling MP
operations.

» E.g.: Read/Write control line.
6. Interrupt Control

« Interrupt is a signal, which suspends the routine what the MP is doing,. brings the control to perform
the subroutine, completes it and returns to main routine.

« May be hardware or software interrupts. Some interrupts may be ignored (maskable). some cannot
(non-maskable).

« E.g. INTR, TRAP, RST 7.5, RST 6.5, RST 5.5
7. Serial 1/O Control

« The MP performs serial data input or output (one bit at a time). In serial transmission, data bits are
sent over a single line, one bit at a time.

« The 8085 has two signals to implement the serial transmission: SID (serial input data) and SOD
(serial output data).

8085 bus structure e

Educational Initiatives

Address Bus

N2

8085 Memory Input N

| Output | Real
MPU :> World

D,

R E— .
D, < Data Bus
— Control Bus >

8085 Bus Structure:

|
K
7

Address Bus:

» The address bus is a group of 16 lines generally identified as AD to A15.

» The address bus is unidirectional: bits flow in one direction-from the MPU to peripheral
devices.

» The MPU uses the address bus to perform the first function: identifying a peripheral or a

maoamaner lneatinn

JI$

JIS GROUP GN-n-

Educational Initiatives

Data Bus:
+ The data bus is a group of eight lines used for data flow.
+ These lines are bi-directional - data flow in both directions between the MPU and memory and

peripheral devices.
+ The MPU uses the data bus to perform the second function: transferring binary information.

+ The eight data lines enable the MPU to manipulate 8-bit data ranging from 00 to FF (28 = 256

numbers).
+ The largest number that can appear on the data bus is 11111111.

Control Bus:
+ The control bus carries synchronization signals and providing timing signals.
+ The MPU generates specific control signals for every operation it performs. These signals are
used to identify a device type with which the MPU wants to communicate.

J.Eup Registers of 8085: GNIT

Educational Initiatives

Accumulator A (8) :Fla:g R:cgi:sleﬂl
B (8) C @ |
D (8) E (8)
H (8) L (8)
Stack Pointer (SP) (16)
Program Counter (PC) (16)
Data Bus Address Bus

Bidirectional Unidirectional

» The 8085 have six general-purpose registers to store 8-bit data during program execution.

« These registers are identified as B, C, D, E, H, and L.
* They can be combined as register pairs-BC, DE, and HL-to perform some 16-bit operations.

JIS

JIS GROUP

Educational Initiatives

Accumulator (A):
» The accumulator is an 8-bit register that is part of the arithmetic/logic unit (ALU).

TR N R

S PEPSREF ' i PRTE R

GNIT

» This register is used to store 8-bit data and to perform arithmetic and logical operations.

» The result of an operation is stored in the accumulator.

Flags:

» The ALU includes five flip-flops that are set or reset according to the result of an operation.

» The microprocessor uses the flags for testing the data conditions.

» They are Zero (Z), Carry (CY), Sign (5), Parity (P), and Auxiliary Carry (AC) flags. The most

commonly used flags are Sign, Zero, and Carry.

The bit position for the flags in flag reqgister is,

D

Dg

Dy

4

2

A

CY

JIS

JIS GROUP

Educational Initiatives

ADDRESSING MODES OF 8085

Every instruction of a program has to operate on a data.

The method of specifying the data to be operated by the
instruction is called

Addressing.

The 8085 has the following 5 different types of addressing.
1. Immediate Addressing

2. Direct Addressing

3. Register Addressing

4. Register Indirect Addressing

5. Implied Addressing

1. Immediate Addressing:

In immediate addressing mode, the data is specified in the instruction itself.
The data will be a part of the program instruction.

EX. MVI B, 3EH - Move the data 3EH given in the instruction to B register; LXI
SP, 2700H.

2. Direct Addressing:

In direct addressing mode, the address of the data is specified in the
instruction. The data will be in memory. In this addressing mode, the program
instructions and data can be stored in different memory.

EX. LDA 1050H - Load the data available in memory location 1050H in to
accumulator; SHLD 3000H

3. Register Addressing:

In register addressing mode, the instruction specifies the name of the
register in which the data is available.

EX. MOV A, B - Move the content of B register to A register; SPHL; ADD
C

4. Register Indirect Addressing:

In register indirect addressing mode, the instruction specifies the
name of the register in which the address of the data is available. Here
the data will be in memory and the address will be in the register pair.

EX. MOV A, M - The memory data addressed by H L pair is moved to A
register.

LDAX B.
5. Implied Addressing:

In implied addressing mode, the instruction itself specifies the data to
be operated.

Opcode and Operand

An instruction is a command to the microprocessor to perform a given task on specified data.
Each instruction has two parts: one is the task to be performed, called the operation code (op-
code), and the second is the data to be operated on, called the operand. The operand (or data)
can be specified in various ways. It may include 8-bit (or 16-bit) data, an internal register, a
memory location, or an 8-bit (or 16-bit) address. In some instructions, the operand is implicit.

* Instruction word size

The 8085 instruction set is classified into the following three groups according to word
size or byte size.

In the 8085, “byte” and “word” are synonymous because it is an 8-bit microproces-
sor. However, instructions are commonly referred to in terms of bytes rather than words.

1. 1-byte instructions
2. 2-byte instructions
3. 3-byte instructions

One byte instruction

A 1-byte instruction includes the opcode and the operand in the same byte. For example:

Task Opcode

Copy the contents of MOV
the accumulator in
register C.

Add the contents of ADD
register B to the
contents of the ac-
cumulator,

[nvert (complement) CMA
each bit in the ac-
cumulator,

Operand*®

Binary Code Hex Code

0100 1111 4FH
1000 0000 80H
0010 1111 2FH

Two byte instruction

In a 2-byte instruction, the first byte specifies the operation code and the second byte
specifies the operand. For example:

Task

LLoad an 8-bit
data byte
in the ac-
cumulator,

Load an 8-bit
data byte in
register B,

Opcode
MVI

MVI

Operand

A32H

B,F2H

Binary Code

0011 1110

0011 0010

0000 0110
1110010

Hex
Code

3E
32

06
F2

First Byte
Second Byte

First Byte
Second Byte

Three byte instruction

In a 3-byte instruction, the first byte specifies the opcode, and the following two bytes
specify the 16-bit address. Note that the second byte is the low-order address and the third
byte is the high-order address. For example:

Binary Hex

Task Opcode Operand Code Code*

Load contents LDA 2050H 0011 1010 3A First Byte
of memory 0101 0000 50 Second Byte
2050H into A. 0010 0000 20 Third Byte

Transfer the JMP 2085H 1100 0011 G3 First Byte
program 1000 0101 85 Second Byte
sequence (o 0010 0000 20 Third Byte

memory location
2085H.

JIS

JIS GROUP

Educational Initiatives

Es INSTRUCTION SET OF INTEL 8085 S™IT

An Instruction is a command given to the computer to perform a
specified operation on given data. The instruction set of a
microprocessor iS the collection of the instructions that the
microprocessor is designed to execute. The programmer can
write a program in assembly language using these instructions.

These instructions have been classified into the following groups:
1. Data Transfer Group

2. Arithmetic Group

3. Logical Group

4. Branch Control Group

5.1/0 and Machine Control Group

GNIT
ana Data Transfer Group

* Instructions, which are used to transfer data from one register
to another register, from memory to register or register to
memory, come under this group. Examples are: MOV, MVI,
LXI, LDA, STA etc. When an instruction of data transfer group
is executed, data is transferred from the source to the
destination without altering the contents of the source. For
example, when MOV A, B is executed the content of the
register B is copied into the register A, and the content of
register B remains unaltered. Similarly, when LDA 2500 is
executed the content of the memory location 2500 is loaded
into the accumulator. But the content of the memory location
2500 remains unaltered.

Sy Arithmetic Group GINIT

* The instructions of this group perform arithmetic operations
such as addition, subtraction; increment or decrement of the

content of a register or memory. Examples are: ADD, SUB, INR,
DAD etc.

Logical Group

* The Instructions under this group perform logical operation
such as AND, OR, compare, rotate etc. Examples are: ANA,
XRA, ORA, CMP, and RAL etc.

Branch Control Group

* This group includes the instructions for conditional and
unconditional jump, subroutine call and return, and restart.
Examples are: IMP, JC, JZ, CALL, CZ, RST etc.

EEEEEEEE
Educational Initiatives

/O and Machine Control Group

* This group includes the instructions for input/output ports,
stack and machine control. Examples are: IN, OUT, PUSH, POP,
and HLT etc.

)15 § Data Transfer Group GINIT

Educational 1

1. MOV r1, r2 (Move Data; Move the content of the one register to another).
[r1] <-- [r2]

2. MOV r, m (Move the content of memory register). r <-- [M]

3. MOV M, r. (Move the content of register to memory). M <-- [r]

4. MVI r, data. (Move immediate data to register). [r] <-- data.

5. MVI M, data. (Move immediate data to memory). M <-- data.

6. LXI rp, data 16. (Load register pair immediate). [rp] <-- data 16 bits, [rh]
<-- 8 LSBs of data.

7. LDA addr. (Load Accumulator direct). [A] <-- [addr].

8. STA addr. (Store accumulator direct). [addr] <-- [A].

9. LHLD addr. (Load H-L pair direct). [L] <-- [addr], [H] <-- [addr+1].

10. SHLD addr. (Store H-L pair direct) [addr] <-- [L], [addr+1] <-- [H].

11. LDAX rp. (LOAD accumulator indirect) [A] <-- [[rp]]

12. STAX rp. (Store accumulator indirect) [[rp]] <-- [A]. 13. XCHG. (Exchange the
contents of H-L with D-E pair) [H-L] <--> [D-E].

2. Arithmetic Group J—

1. ADD r. (Add register to accumulator) [A] <-- [A] + [r].

2. ADD M. (Add memory to accumulator) [A] <-- [A] + [[H-L]].

3. ADCr. (Add register with carry to accumulator). [A] <-- [A] + [r] + [CS].
4. ADC M. (Add memory with carry to accumulator) [A] <-- [A] + [[H-L]]
[CS].

5. ADI data (Add immediate data to accumulator) [A] <-- [A] + data.

6. ACl data (Add with carry immediate data to accumulator). [A] <-- [A] +
data + [CS].

7. DAD rp. (Add register paid to H-L pair). [H-L] <-- [H-L] + [rp].

8. SUB r. (Subtract register from accumulator). [A] <-- [A] — [r].

9. SUB M. (Subtract memory from accumulator). [A] <-- [A] — [[H-L]].

10. SBB r. (Subtract register from accumulator with borrow). [A] <-- [A] — [r]
- [CS].

-

JIS GROUP l
Educational Initiatives

11. SBB M. (Subtract memory from accumulator with borrow). [A] <-- [A] — [[H-
L]] - [CS].

12. SUI data. (Subtract immediate data from accumulator) [A] <-- [A] — data.

13. SBI data. (Subtract immediate data from accumulator with borrow). [A] <--
[A] — data — [CS].

14. INR r (Increment register content) [r] <-- [r] +1.

15. INR M. (Increment memory content) [[H-L]] <-- [[H-L]] + 1.
16. DCR r. (Decrement register content). [r] <-- [r] — 1.

17. DCR M. (Decrement memory content) [[H-L]] <-- [[H-L]] — 1.
18. INX rp. (Increment register pair) [rp] <-- [rp] — 1.

19. DCX rp (Decrement register pair) [rp] <-- [rp] -1.

20. DAA (Decimal adjust accumulator)

JI$ GiT

JIS GROUP
Educational Initiatives

DAA (Decimal adjust accumulator)

* The instruction DAA is used in the program after ADD, ADI,
ACIl, ADC, etc instructions. After the execution of ADD, ADC,
etc instructions the result is in hexadecimal and it is placed in
the accumulator. The DAA instruction operates on this result
and gives the final result in the decimal system. It uses carry
and auxiliary carry for decimal adjustment. 6 is added to 4
LSBs of the content of the accumulator if their value lies in
between A and F or the AC flag is set to 1. Similarly, 6 is also
added to 4 MSBs of the content of the accumulator if their
value lies in between A and F or the CS flag is set to 1. All
status flags are affected. When DAA is used data should be in
decimal numbers

JIS

JIS GROUP

Educational Initiatives

JJJJJJJJ
Educational Initiatives

INSTRUCTION SET OF INTEL 8085

An Instruction is a command given to the computer to perform a
specified operation on given data. The instruction set of a
microprocessor iS the collection of the instructions that the
microprocessor is designed to execute. The programmer can
write a program in assembly language using these instructions.

These instructions have been classified into the following groups:
1. Data Transfer Group

2. Arithmetic Group

3. Logical Group

4. Branch Control Group

5.1/0 and Machine Control Group

Logical Group e

1. ANA r. (AND register with accumulator) [A] <-- [A] 2 [r].

2. ANA M. (AND memory with accumulator). [A] <-- [A] A [[H-L]].

3. ANI data. (AND immediate data with accumulator) [A] <-- [A] A data.
4. ORA 1. (OR register with accumulator) [A] <-- [A] v [r].
5
6
7

. ORA M. (OR memory with accumulator) [A] <-- [A] v [[H-L]]
. ORI data. (OR immediate data with accumulator) [A] <-- [A] v data.
. XRA r. (EXCLUSIVE — OR register with accumulator) [A] <-- [A] v [r]
8. XRA M. (EXCLUSIVE-OR memory with accumulator) [A] <-- [A] v
[[H-L]]
9. XRI data. (EXCLUSIVE-OR immediate data with accumulator) [A] <--
[A]
10. CMA. (Complement the accumulator) [A] <-- [A]
11. CMC. (Complement the carry status) [CS] <-- [CS]
12. STC. (Set carry status) [CS] <-- 1.
13. CMP r. (Compare register with accumulator) [A] — [r]
14. CMP M. (Compare memory with accumulator) [A] — [[H-L]]

J .S GNIT

JJJJJJJJ

15. CPI data. (Compare immediate data with accumulator) [A] —
data. The 2nd byte of the instruction is data, and it is subtracted
from the content of the accumulator. The status flags are set
according to the result of subtraction. But the result is discarded.
The content of the accumulator remains unchanged.

16. RLC (Rotate accumulator left) [An+1] <-- [An], [AO] <-- [A7],[CS]
<-- [A7].
The content of the accumulator is rotated left by one bit.

The seventh bit of the accumulator is moved to carry bit as well as
to the zero bit of the accumulator. Only CS flag is affected.

s l-q AT Al >|

Carry Status Accumulator

UUUUUUUU
Educational Initiatives

RRC. (Rotate accumulator right) [A7] <-- [A0], [CS] <-- [AO], [An]

<--[An+1].
s ‘ (AT AD —L

i i

Carry Status Accumulator

The content of the accumulator is rotated right by one bit. The
zero bit of the accumulator is moved to the seventh bit as well as
to carry bit. Only CS flag is affected.

18. RAL. (Rotate accumulator left through carry) [An+1] <-- [An],
[CS] <-- [A7], [AO] <-- [CS].

19. RAR. (Rotate accumulator right through carry) [An] <--
[An+1], [CS] <-- [AQ], [A7] <-- [CS]

S 4. Branch Group
1. JMP addr (label). (Unconditional jump: jump to the instruction specified
by the address). [PC] <-- Label.
2. Conditional Jump addr (label): After the execution of the conditional jump
instruction the program jumps to the instruction specified by the address
(label) if the specified condition is fulfilled. The program proceeds further
in the normal sequence if the specified condition is not fulfilled. If the
condition is true and program jumps to the specified label, the execution
of a conditional jump takes 3 machine cycles: 10 states. If condition is not
true, only 2 machine cycles; 7 states are required for the execution of the
instruction.

.JZ addr (label). (Jump if the result is zero)

. JNZ addr (label) (Jump if the result is not zero)

.JC addr (label). (Jump if there is a carry)

. JNC addr (label). (Jump if there is no carry)

JP addr (label). (Jump if the result is plus)

.JM addr (label). (Jump if the result is minus)

. JPE addr (label) (Jump if even parity)

. JPO addr (label) (Jump if odd parity)

GNIT

0O NOOUASWNBR

L]

JIS GNIT

JIS GRO

JiIsS GROUFR
Educational Initiatives

3. CALL addr (label) (Unconditional CALL: call the subroutine
identified by the operand)

CALL instruction is used to call a subroutine. Before the control is
transferred to the subroutine, the address of the next instruction
of the main program is saved in the stack. The content of the
stack pointer is decremented by two to indicate the new stack
top. Then the program jumps to subroutine starting at address
specified by the label.

4. RET (Return from subroutine)

5. RST n (Restart) Restart is a one-word CALL instruction. The
content of the program counter is saved in the stack. The
program jumps to the instruction starting at restart location.

- 5. Stack, I/O and Machine Control Group ™"

. IN port-address. (Input to accumulator from 1/O port) [A] <-- [Port]
. OUT port-address (Output from accumulator to I/O port) [Port] <-- [A]
. PUSH rp (Push the content of register pair to stack)
. PUSH PSW (PUSH Processor Status Word)
. POP rp (Pop the content of register pair, which was saved, from the stack)
. POP PSW (Pop Processor Status Word)
. HLT (Halt)
. XTHL (Exchange stack-top with H-L)
. SPHL (Move the contents of H-L pair to stack pointer)
10. El (Enable Interrupts)
11. DI (Disable Interrupts)
12. SIM (Set Interrupt Masks)
13. RIM (Read Interrupt Masks)
14. NOP (No Operation)

© 00N UE WNER

JIS

JIS GROUP

Educational Initiatives

Instruction cycle

The timing and control unit generates timing signals for the execution of
instruction and control of peripheral devices. The timing used for the execution
of instructions and control of peripherals are different for different
microprocessors. The design and cost of a processor also depends on the timing
structure and register organization.

For the execution of an instruction a microprocessor fetches the instruction
from the memory and executes it. The time taken for the execution of an
instruction is called instruction cycle (IC).

An instruction cycle consists of a fetch cycle (FC) and an execute cycle (EC).

A fetch cycle is the time required for the fetch operation in which the machine
code of the instruction (opcode) is fetched from the memory. This time is a fixed
slot of time. An execute cycle is of variable width which depends on the
instruction to be executed.

The total time for the execution is given by IC = FC + EC

Fetch Operation

In fetch operation the microprocessor gets the 1st byte of the instruction,
which is operation code (opcode), from the memory. The program counter keeps the
track of address of the next instruction to be executed. In the beginning of the fetch
cycle the content of the program counter is sent to the memory. This takes one clock
cycle.

The memory first reads the opcode. This operation also takes one clock cycle.

Then the memory sends the opcode to the microprocessor, which takes one clock
period.

The total time for fetch operation is the time required for fetching an opcode from the
memory. This time is called fetch cycle. Having received the address from the
microprocessor the memory takes two clock cycles to respond as explained above. If
the memory is slow, it may take more time. In that case the microprocessor has to
wait for some time till it receives the opcode from the memory. The time for which the
microprocessor waits is called wait cycle. Most of the microprocessor have provision
for wait cycles to cope with slow memory.

Execute Operation

The opcode fetched from the memory
goes to the data register, DR
(data/address buffer in Intel 8085) and
then to instruction register, IR. From the
instruction register it goes to the
decoder circuitry is within the
microprocessor. After the instruction is

decoded, execution begins. If the
operand is in the general purpose
registers, execution is immediately

performed. The time taken in decoding
and the address of the data, some read
cycles are also necessary to receive the
data from the memory. These read cycle
are similar to opcode fetch cycle. The
fetch quantities in these cycles are
address or data. Figure (a) and Figure
(b) shows an instruction and fetch cycle
respectively

Clock——p

Clock —p

4——— Instruction Cycle —»

Execute
-¢—— Fetch Cycle '—"’l"" th‘;

ANAYANENA

“ Fe ——>j—EC '::‘
I« IC

Figure (a) Instruction cycle showing FC, EC and IC

Receive Instructions
‘ from memo

Send address | . Memory gets, . Tr
— ansfer
to memory™ [~ opcode -Lr_npcadﬂ o
— — r—‘ m.p
Time —»

Figure (b) A Typical Fetch Cycle

Machine Cycle

Machine cycles of 8085

The 8085 microprocessor has 5 (seven) basic
machine cycles. They are

v OpCOde fetch CyCIe (4T) Time period, T = 1/f ; where [= Internal clock frequency
v"Memory read cycle (3 T)

M tecycle 3 T) CEE, o
emory write cycle ,

v'1/O read cycle (3 T) M'"VCWJLF_/_

v'1/0 write cycle (3 T) S

Fig 1.7 Clock Signal

t1

t2

N

Machine Cycle 1

Fetch Cycle

t3

O\

t4

L

t5

.

Machine Cycle 2

t6

1

Instruction Cycle

t7

-

7

Execution Cycle ——

Instruction cycle in 8085 microprocessor

The time required by the microprocessor to complete an operation of
accessing memory or input/output devices is called machine cycle. One time
period of frequency of microprocessor is called t-state. A t-state is measured

from the falling edge of one clock pulse to the falling edge of the next clock

pulse.

Fetch cycle takes four t-states and execution cycle takes three t-states.

CLK

IO/ =0,S_=1,S, =1/ Opcode fetch
2

VA,

Fig

Opcode fetch machine cycle

1.0pcode fetch machine cycle of 8085 :

» Each instruction of the processor has one byte opcode.

The opcodes are stored in memory. So, the processor executes the
opcode fetch machine cycle to fetch the opcode from memory.

Hence, every instruction starts with opcode fetch machine cycle.

The time taken by the processor to execute the opcode fetch cycle is
4T.

In this time, the first, 3 T-states are used for fetching the opcode from
memory and the remaining T-states are used for internal operations by
the processor.

2. Memory Read Machine Cycle of 8085:

The memory read
machine cycle IS
executed by the

processor to read a data
byte from memory.

The processor takes 3T
states to execute this
cycle.

The instructions which
have more than one byte
word size will use the
machine cycle after the
opcode fetch machine
cycle.

CLK

ALE

IO/M, S,. S,

Fig

LF'

Memory read —-b'
T‘\

eI |

Memory addr

ess

¥ i |
X
"

0 >< A - A) (Dam from mcmo:y)
—< IOM=0,S,=1,S,=0

Memory Read Machine Cycle

3. Memory Write Machine Cycle of 8085

The memory write
machine cycle is
executed by the
processor to write a
data byte in a memory
location.

The processor takes, 3T
states to execute this
machine cycle.

CLK

ALE

A; — AD,

1O/M

Fig

}1—— Opcode write —-D‘

Memory Write Machine Cycle

4. 1/0 Read Cycle of 8085

The |/O Read cycle is
executed by the processor to
read a data byte from 1/O
port or from the peripheral,
which is 1/0, mapped in the
system.

The processor takes 3T
states to execute this
machine cycle.

The IN instruction uses this
machine cycle during the
execution.

¢— /O Read ———Pp

T,

T3

T3

—

CLK

ALE

N |
PR

As — Ay X /O Addr
A; — AD Xvoadss{)—(vopaa)
. { | 7~
oMS;S; | X 1oMi=1.5=157=0

Fig

1/0 Read Cycle

Timing diagram for STA 526AH

k Opcode fetch Memory read

¢

Memory read Memory write
e —}e¢

ﬁ'

|
|
| |
[|
- — ' J | I
uo/ﬁ.so.s_ff %o. 1, 1; '0,0,1 X o001 10,1,0
. g f’
Fig Timing Diagram for STA 526A H

Address | Mnemonics

41FF STA 526 AR

Timing diagram
for TA526AH

4200

4201

STA means Store Accumulator -The contents of the accumulator is stored
in the specified address (526A).

The opcode of the STA instruction is said to be 32H. It is fetched from the
memory 41FFH (see fig). - OF machine cycle

Then the lower order memory address is read (6A). - Memory Read
Machine Cycle

Read the higher order memory address (52).- Memory Read Machine
Cycle

The combination of both the addresses are considered and the content
from accumulator is written in 526A. - Memory Write Machine Cycle
Assume the memory address for the instruction and let the content of
accumulator is C7H. So, C7H from accumulator is now stored in 526A.

3. Timing diagram for INR M

Fetching the
Opcode 34H from
the memory
4105H. (OF cycle)

Let the memory
address (M) be
4250H. (MR cycle -
To read Memory
address and data)

Let the content of
that memory s
12H.

Increment the
memory content
from 12H to 13H.
(MW machine
cycle)

Address | Mmsmonks | Opcoode

4105 INE. W My

, Opcodefetch Memoryread , Memory write |
[‘ g o R ’]‘ - r]‘ - ’l- -ln "

—
IO/M.S,.S
0 Jx 0,1, 0,0, | 0,1,0

Fig 1.13 Timing Diagram for INR M

J($

JIS GROUP
Educational Initiatives

8085 AF=+—01001111
Microprocessor Data Bus
Memory
] 2000
Internal Data Bus
S
Flag : B C
Accumulator | | Flip- lrg:;uoc(;::n “ D 5 2005401001 111
Flops H L
Arithmetic/Logic Unit SP
T PC
|
Control
Unit 2005
Address Bus T
Control Signals 4F —»~
MEMR

Figure 1

JIS

JIS GROUP

Educational Initiatives

UM 3085 interrupt structure and operation &iT

JIS GROUP
Educational Initiatives

Types of interrupt

The 8085 has multilevel interrupt system. It supports two types of interrupts:
a. Hardware b, Software

Hardware : Some pins on the B085 allow peripheral device to interrupt the main
program for 1/0 operations, When an interrupt occurs, the 8085 completes the instruction
it is currently executing and transfers the program control to a subroutine that services the
peripheral device. Upon completion of the service routine, the MPU returns to the main
program. These types of interrupts, where MPU pins are used to receive interrupt requests,
are called hardware interrupts.

Software : In software interrupts, the cause of the interrupt is an execubion of the
instruction. These are special instructions supported by the microprocessor. After execution
of these instructions microprocessor completes the execution of the instruction it is
currently executing and transfers the program control to the subroutine program. Upon
completion of the execution of the subroutine program, program control returmns to the

MAIN program.

M Hardware interrupts in 8085 o

JIS GROUP
Educational Initiatives

The 8085 has five hardware interrupts :
1. TRAP 2.R5T75 3. R5T 65 4 R5T 55 5. INIR
When any of these pins, except INTR, is active, the internal control circuit of the 8085
produces a CALL to a predetermined memory location. This memory location, where the

subroutine starts is referred to as wector location and such interrupts are called vectored
interrupts. The INTR is not a vectored interrupt. It receives the address of the subroutine

from the external device.

[n 8085, all interrupts except TRAP are maskable. When logic signal is applied to a
maskable interrupt input, the 8085 is interrupted only if that particular input is enabled.
These interrupts can be enabled or disabled under program control. If disabled, 8085
disables an interrupt request. The interrupt TRAP is nonmagkable whish means that it is
not maskable by program control. The Fig. shows the interrupt structure of 8085, The
figure indicates that, the 8085 is designed to respond to edge triggering, level triggering or
both.

Sy Interrupt structure of 8085 GHNiT
Priarity lnput pin Mask ector
locations
-J RST o @
i + W adge s cLrR O - \
irggerad

|
Reset T
RET 7.5 Intermupt
recognized
3 I RST I

Level triggerad

M&5
o

1D
Level triggered — | j_'_hh"'i,

— M55

! I TRAP |
Both +ve edge
and level triggered

—]_
=] Q |
o Inbarrupt |
Reset p enable

Any intermupt recognized .

— R3T

L [O &
° ' from

- triggered hard-war

e TRAP o

This interrupt is a nonmaskable interrupt. [t is unaffected by any mask or interrupt
enable. TRAP has the highest priority. TRAP interrupt is edge and level triggered. This
means that the TRAF must go high and remain high until it is acknowledged. This avoids
false triggering caused by noise and transients.

There are two ways to clear TRAP interrupt :
1. By resetting microprocessor ie. giving a low signal on RESETIN pin (External
signal).
2. By giving a high TRAF ACKNOWLEDGE (Internal signal).

After recognition of TRAP interrupt, 8085 internally generates a high TRAF
ACKNOWLEDGE which clears the flip flop. Once the TRAF is acknowledged, the 8085
completes i3 current instruction. It then pushes the address of the next instruction ie.
refurn address onto the stack and loads PC with the fixed vector address 0024H. Due to
this, B0B5 starts execution of instructions from address 0024H which is the starting address
of an interrupt service routine for TRAP.

IS GIVIT

RST 7.5 : The RST 75 interrupt is a maskable interrupt. It has the second highest
priority. As shown in Fig, it is positive edge triggered and the positive edge trigger
is stored internally by the D-flip flop until it is cleared by software reset using SIM
instruction or by internally generated ACKNOWLEDGE signal.

The positive edge signal on the RST 7.5 pin sets the D flip flop. If the mask bit M 7.5
is 0 Le. RST 7.5 is unmasked then 8085 completes its current instruction. It then pushes the
address of the next instruction onto the slack and loads PC with the fixed vector address
003CH. Due to this, 8085 starts execution of instructions from address 003CH which is the
starting address of an interrupt service routine for R5T 7.5, .

RST 65 and RST 55 : The RST 65 and RST 55 both are level tnggr.'ml These

interrupts can be masked using SIM instruction. The RST 6.5 has the third priority whereas
RST 5.5 has the fourth priority. The vector addresses of RST 6.5 and RST 55 are 0034H
and 002CH respectively. After recognition of RST 6.5 or RST 5.5 interrupt, 8085 completes

its current instruction; pushes the address of next instruction onto the stack and loads PC

with corresponding vector address.

INTR e

.+ INTR is a maskable interrupt, but not the vector interrupt It has the lowest
priority. The following sequence of events occur when INTR signal goes high.

1. The 8085 checks the status of INTR signal during execution of each instruction.

2, If INTR signal is high, then B0B5 completes its current instruction and sends an
active low interrupt acknowledge signal (INTA) if the interrupt is enabled.

3. In response to the INTA signal, external logic places an instruction OPCODE on the
data bus. In the case of multibyte instruction, additional interrupt acknowledge
machine cycles are generated by the 8085 to transfer the additional bytes into the
MUCTOPTOCESSOT.

4. On receiving the instruction, the 8085 saves the address of next instruction on stack
and executes received instruction.

Note : 'l'lmureliﬁ, the external logic can place any instruction code on the data bus in
response to the INTA. However, only CALL and RST codes save the contents of the PC on
the stack and branch program control to the subroutine address.

JIS

GINIT
= Summary of hardware interrupts
Inforrupt type | Trigger Priority Maskable | Vector address
TRAP Edge and Level | 1% (Highest) | No 0024 H
RST 75 Edge e _ Yo R
| RST6S5 Level 3 _Tes 0034H
;' = h&f EE Level 4t _ Yes 002CH
[wm Level | 5% (Lowest) Yes

JIS Software interrupts in 8085 GINIT

JIS GROUP
Educational Initiatives

The BO85 has eight software interrupts from RST 0 to RST 7. The vector address for
these interrupts can be calculated as follows.,

[nterrupt number x 8 = vector address
For example :

2% B =40 =28H
. Vector address for interrupt R5T 5 is (028H.

Instruction HEX code Vector address E

RST 0 7 0000H {

RST1 | CF | 0OOBH

RST 2 o7 Q010H

RST 3 OF 0018H

RST 4 E7 0020H f

' | Vector address of

RST 5 EF 0028H | .
| software interrupts
| RST 6 F7 | D030H
': _RSTY | FF 0O38H

IS Masking and unmasking of Interrupts GNIT

JIS GROUP

Educational Initiatives

 Maskable interrupts are enabled or disabled under program
control. Three instructions for masking and unmasking of
interrupts.

1. El 2.DI 3.SIM
El : Enable Interrupt

The EI instruction sets the interrupt enable flip-flop, as shown in Fig. Thus RST
7.3, RST 6.5, R5T 5.5 and INTR are enabled using El instruction.

It is important to note that when any interrupt i3 acknowledged, interrupt enable flip
flop resets and disables all interrupts. To enable interrupt in further process it is necessary
to execute El instruction within interrupt service routine.

Dl : Disable Interrupt

The DI instruction resets the interrupt enable flip flop, as shown in Fig. . Thus it
disables RST 7.5, RST 6.5, RST 5.5 and INTR interrupts.

o GNIT

JI$

JIS GROUP
Educational Initiatives

SIM : Set Interrupt Mask

This instruction is used to set interrupt mask and to send serial output. It transfers the
contents of accumulator to interrupt control logic and serial I/0 port. Thus it is necessary
to load appropriate contents in the accumulator before execution of SIM instruction,

Pending Interrupts

The Read Interrupt Mask, RIM, instruction is used to handle pending interrupts. It
loads the status of the interrupt mask, the pending interrupts and the contents of the serial
input data line, SID, into the accumulator. Thus, it is possible to monitor status of
interrupt mask, pending interrupts and serial input. There are number of interrupts. When
one interrupt is being serviced, other interrupt requests may occur. If the interrupt
requests are of higher priority, B0B5 branches program control to the requested interrupt
service routines, But when the interrupt requests are of lower priority, 8085 stores the
information about these interrupt requests. Such interrupts are called pending interrupts,
The status of pending interrupts can be monitored using RIM instruction.

JIS

B Accumulator content for SIM

Educational Initiatives

7 6 5 4 3 2 | 0
SOD | SDE | xxx | R7.5 | MSE |M7.5|M6.5 | M5.5

W_JKYJ v—
L RST7.5 MASK

RST6.5 MASK {0
RST5.5 MASK |

If 0, bits 0-2 ignored
If |, mask is set

— Mask Set Enable {

— RESET RST7.5: If I, RST7.5 flip-flop is reset OFF
— [gnored

—If 1, bit 7 is output to Serial Output Data Latch

L Serial Output Data: ignored if bit 6=0

FIGURE
Interpretation of the Accumulator Bit Pattern for the SIM Instruction

available
masked

GNIT

SOURCE: Intel Corporation, Assembly Language Progranmming Maneal 1Santa Clara, Calif.: Author, 1979), pp. 3-59.

s ariT

EEEEEEEE

 Example 1, Enableal the interrupts of Intel 8085,

The content of the accumulator for instructions SIM to enable RST 7.5, 6.5 and 5.5 are
programmed as follows.

7 6 5 4 3 2 1 0
SOD SOE X R7.5 MSE M7.5 M6.5 M5.5
0 0 0 0 1 0 0 -~ 0=08

’ B.its 0,1and 2 are set to 0 to enable RST 7.5,6.5and 5.5. Bit 3is set to make bits 0, 1 and 2 effective.
Bit 4 is set to 0 to enable RST 7.5 asit is an additional control for RST 7.5,

Instructions
Mnemonic Operands Comments
El Enable all interrupts
MVI A, 08 Get accumulator bit pattern
to enable RST 7.5, 6.5 and 5.5
SIM Enable RST 7.5, 6.5 and 5.5

Instruction EI and SIM both are essential to enable RST 7.5,6.5 and 5.5. In addition toRST 7.5, 6.5
and 5.5 the instruction EI also enables INTR.

GNIT

~ Example 2. Enable RST 6.5 and disable RST 7.5 and 5.5.
The contents of the accumulator to enable RST 6.5 and disable RST 7.5 and 5.5 are

7 6 5 4 3 2 1 0

SOD SOD X R7.5 MSE M75 M5 M5.5
0 0 0 1 1 1 0 1=1D

Bit 1is set to 0 to enable RST 6.5.

Bits 0 and 2 are set to 1 tomask off (disable) RST 5.5 and 7.5 respectively. Bit 4 which s an additic
control for RST 7.5is set to 1 to disableRST7.5.

Bit 3 is set to 1 to make bits 0, 1 and 2 effective.

Instructions
El - Enable interrupts
MVIA, 1D Accumulator bit pattern to enable RST 6.5
and mask off RST 7.5 and 5.5.

SIM Fnable RST 6.5 and disable RST 7.5 and 5.5.

MODULE 3

LECTURE 1: ARCHITECTURE OF 8086

1. ARCHITECTURE OF 8086

Unlike microcontrollers, microprocessors do not have inbuilt memory. Mostly Princeton
architecture is used for microprocessors where data and program memory are combined in a
single memory interface. Since a microprocessor does not have any inbuilt peripheral, the circuit
is purely digital and the clock speed can be anywhere from a few MHZ to a few hundred MHZ
or even GHZ. This increased clock speed facilitates intensive computation that a microprocessor
is supposed to do.

We will discuss the basic architecture of Intel 8086 before discussing more advanced
microprocessor architectures.

Internal architecture of Intel 8086:

Intel 8086 is a 16 bit integer processor. It has 16-bit data bus and 20-bit address bus. The
lower 16- bit address lines and 16-bit data lines are multiplexed (ADO-AD15). Since 20-bit
address lines are available, 8086 can access up to 2 20 or 1 Giga byte of physical memory.

The basic architecture of 8086 is shown below.

The internal architecture of Intel 8086 is divided into two units, viz., Bus Interface Unit
(BIU) and Execution Unit (EU).

Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) generates the 20-bit physical memory address and provides
the interface with external memory (ROM/RAM). As mentioned earlier, 8086 has a single
memory interface. To speed up the execution, 6-bytes of instruction are fetched in advance and
kept in a 6- byte Instruction Queue while other instructions are being executed in the Execution
Unit (EU). Hence after the execution of an instruction, the next instruction is directly fetched
from the instruction queue without having to wait for the external memory to send the
instruction. This is called pipe-lining and is helpful for speeding up the overall execution
process.

8086's BIU produces the 20-bit physical memory address by combining a 16-bit segment
address with a 16-bit offset address. There are four 16-bit segment registers, viz., the code
segment (CS), the stack segment (SS), the extra segment (ES), and the data segment (DS). These
segment registers hold the corresponding 16-bit segment addresses. A segment address is the
upper 16-bits of the starting address of that segment. The lower 4-bits of the starting address of a
segment is always zero. The offset address is held by another 16-bit register. The physical 20-bit
address is calculated by shifting the segment address 4-bit left and then adding that to the offset
address.

For Example:

Memory
interface

Instruction :

<:_ Stream
ES Byte
CS Queue

8086 internal architecture

Figure 3.1: 8086 Architecture

Code segment Register CS holds the segment address which is 4569 H Instruction pointer IP
holds the offset address which is 10A0 H The physical 20-bit address is calculated as follows

Segment address: 45690 H
Offset address:+ 10A0 H
Physical address: 46730 H

Most of the registers contain data/instruction offsets within 64 KB memory segment. There are
four different 64 KB segments for instructions, stack, data and extra data. To specify where in 1
MB of processor memory these 4 segments are located the processor uses four segment

registers:

Code segment (CS) is a 16-bit register containing address of 64 KB segment with processor
instructions. The processor uses CS segment for all accesses to instructions referenced by
instruction pointer (IP) register. CS register cannot be changed directly. The CS register is
automatically updated during far jump, far call and far return instructions.

Stack segment (SS) is a 16-bit register containing address of 64KB segment with program stack.
By default, the processor assumes that all data referenced by the stack pointer (SP) and base
pointer (BP) registers is located in the stack segment. SS register can be changed directly using
POP instruction.

Data segment (DS) is a 16-bit register containing address of 64KB segment with program
data. By default, the processor assumes that all data referenced by general registers (AX, BX,
CX, DX) and index register (SI, DI) is located in the data segment. DS register can be
changed directly using POP and LDS instructions.

Extra segment (ES) is a 16-bit register containing address of 64KB segment, usually with
program data. By default, the processor assumes that the DI register references the ES
segment in string manipulation instructions. ES register can be changed directly using POP
and LES instructions.

It is possible to change default segments used by general and index registers by prefixing
instructions with a CS, SS, DS or ES prefix.

Execution Unit:

All general registers of the 8086 microprocessor can be used for arithmetic and logic operations.
The general registers are:

Accumulator register consists of 2 8-bit registers AL and AH, which can be combined
together and used as a 16-bit register AX. AL in this case contains the low-order byte of the
word, and AH contains the high-order byte. Accumulator can be used for 1/0 operations and
string manipulation. Base_register consists of 2 8-bit registers BL and BH, which can be
combined together and used as a 16-bit register BX. BL in this case contains the low-order
byte of the word, and BH contains the high-order byte. BX register usually contains a data
pointer used for based, based indexed or register indirect addressing.

Count register consists of 2 8-bit registers CL and CH, which can be combined together and
used as a 16-bit register CX. When combined, CL register contains the low-order byte of the
word, and CH contains the high-order byte. Count register can be used as a counter in string
manipulation and shift/rotate instructions.

Data register consists of 2 8-bit registers DL and DH, which can be combined together and
used as a 16-bit register DX. When combined, DL register contains the low-order byte of the
word, and DH contains the high-order byte. Data register can be used as a port number in 1/0
operations. In integer 32-bit multiply and divide instruction the DX register contains high-
order word of the initial or resulting number.

The following registers are both general and index registers:

Stack Pointer (SP) is a 16-bit register pointing to program stack.

Base Pointer (BP) is a 16-bit register pointing to data in stack segment. BP register is
usually used for based, based indexed or register indirect addressing.

Source Index (SI) is a 16-bit register. Sl is used for indexed, based indexed and register
indirect addressing, as well as a source data address in string manipulation instructions.

Destination _Index (DI) is a 16-bit register. DI is used for indexed, based indexed and
register indirect addressing, as well as a destination data address in string manipulation
instructions.

Other registers:

Instruction Pointer (IP) is a 16-bit register.

Flags is a 16-bit register containing 9 1-bit flags:
« Overflow Flag (OF) - set if the result is too large positive number, or is too small
negative number to fit into destination operand.
« Direction Flag (DF) - if set then string manipulation instructions will auto-decrement
index registers. If cleared then the index registers will be auto-incremented.
- Interrupt-enable Flag (IF) - setting this bit enables maskable interrupts.
« Single-step Flag (TF) - if set then single-step interrupt will occur after the next
instruction.
« Sign Flag (SF) - set if the most significant bit of the result is set.
« Zero Flag (ZF) - set if the result is zero.
Auxiliary carry Flag (AF) - set if there was a carry from or borrow to bits 0-3 in the
AL register.
« Parity Flag (PF) - set if parity (the number of "1" bits) in the low-order byte of the
result is even.
« Carry Flag (CF) - set if there was a carry from or borrow to the most significant bit
during last result calculation.

LECTURE 2: PIN DETAILS OF 8086

2. PIN DETAILS OF 8086

The following pin function descriptions are for 8086 systems in either minimum or maximum
mode. The 'Local

Bus" in these descriptions is the direct multiplexed bus interface connection to the 8086 (without
regard to additional bus buffers).

AD15+AD0 2+16, 39 -ADDRESS DATA BUS: These lines constitute the time multiplexed
memory/lIO address (T1), and data (T2, T3, TW, T4) bus. AO is analogous to BHE for the lower
byte of the data bus, pins D7+DO0. It is LOW during T1 when a byte is to be transferred on the
lower portion of the bus in memory or I/O operations. Eight-bit oriented devices tied to the
lower half would normally use AO to condition chip select functions. (See BHE.) These lines are
active HIGH and float to 3-state OFF during interrupt acknowledge and local bus "hold
acknowledge”

Al19/S6,, A18/S5 , A17/S4, A16/S3 35+38 - ADDRESS/STATUS: During T1 these are the four
most significant, address lines for memory operations. During I/O operations these, lines are
LOW. During memory and 1/O operations, status information is available on these lines during
T2, T3, TW, T4. The status of the interrupt enable FLAG bit (S5) is updated at the beginning of
each CLK cycle. A17/S4 and A16/S3 are encoded as shown. This information indicates which
relocation register is presently being used for data accessing. These lines float to 3-state OFF
during local bus "hold acknowledge.”

BHE/S734 - BUS HIGH ENABLE/STATUS: During T1 the bus high enable signal (BHE)
should be used to enable data onto the most significant half of the data bus, pins D15+D8. Eight-
bit oriented devices tied to the upper half of the bus would normally use BHE to condition chip
select functions. BHE is LOW during T1 for read, write, and interrupt acknowledge cycles when
a byte is to be transferred on the high portion of the bus. The S7 status information is available
during T2, T3, and T4. The signal is active LOW, and floats to 3-state OFF in hold". It is LOW
during T1 for the first interrupt acknowledge cycle.

RD 32 READ: Read strobe indicates that the processor is performing a memory or 1/0O read
cycle, depending on the state of the S2 pin. This signal is used to read devices which reside on
the 8086 local bus. RD is active LOW during T2, T3 and TW of any read cycle, and is
guaranteed to remain HIGH in T2 until the 8086 local bus has floated. This signal floats to 3-
state OFF in "hold acknowledge".

READY 22 - READY: is the acknowledgement from the addressed memory or 1/O device
that it will complete the data transfer. The READY signal from memory/l1O is synchronized by
the 8284A Clock Generator to form READY. This signal is active HIGH. The 8086 READY
input is not synchronized. Correct operation is not guaranteed if the setup and hold times are not
met.

INTR 18 - INTERRUPT REQUEST: is a level triggered input which is sampled during the last
clock cycle of each instruction to determine if the processor should enter into an interrupt
acknowledge operation. A subroutine is vectored to via an interrupt vector lookup table located
in system memory. It can be internally masked by software resetting the interrupt enable bit.
INTR is internally synchronized. This signal is active HIGH.

TEST 23 TEST: input is examined by the "Wait" instruction. If the TEST input is LOW
execution continues, otherwise the processor waits in an "ldle" state. This input is synchronized
internally during each clock cycle on the leading edge of CLK.

NMI 17 NON-MASKABLE INTERRUPT an edge triggered input which causes a type 2
interrupt. A subroutine is vectored to via an interrupt vector lookup table located in system
memory. NMI is not maskable internally by software. A transition from LOW to HIGH initiates
the interrupt at the end of the current instruction. This input is internally synchronized.

RESET 21 - RESET: causes the processor to immediately terminate its present activity. The
signal must be active HIGH for at least four clock cycles. It restarts execution, as described in
the Instruction Set description, when RESET returns LOW. RESET is internally synchronized.

CLK 19 CLOCK: provides the basic timing for the processor and bus controller. It is
asymmetric with a 33% duty cycle to provide optimized internal timing.

VCC 40 VCC: a5V power supply pin. ,GND 1, 20 GROUND

MN/MX 33 | MINIMUM/MAXIMUM: indicates what mode the processor
is to operate in. The two modes are discussed in the following sections.

Operating Modes of 8086

There are two modes of operation for Intel 8086, namely the minimum mode and the
maximum mode. When only one 8086 CPU is to be used in a microcomputer system the 8086 is
used in the minimum mode of operation. In this mode the CPU issues the control signals
required by memory and 1/O devices. In a multiprocessor system it operates in the maximum
mode. In case of maximum mode of operation control signals are issued by Intel 8288 bus
controller which is used with 8086 for this very purpose. The level of the pin MN/MX' decides
the operating mode of 8086. When MN/MX' is high the CPU operates in the minimum mode.
When it is low the CPU operates in the maximum mode. From pin 24 to 31 issue two different
sets of signals. One set of signals is issued when the CPU operates in the maximum mode. Thus
the pins from 24 to 31 have alternate functions.

Pin description for Minimum Mode:

For the minimum mode of operation the pin MN / MX" is connected to 5 V D.C. supply, i.e., MN
/ MX" = Vcc. The description of the pins from 24 to 31 for the minimum mode is as follows:

INTA' (Output): Pin No. 24 Interrupt acknowledge. On receiving interrupt signal the processor
issues an interrupt acknowledge signal. It is active LOW.

ALE (Output) Pin No. 25 Address latch enable. It goes High during T1. The microprocessor
sends this signal to latch the address into the Intel 8282 / 8283 latch.

DEN' (Output) Pin No. 26. Data enable. When Intel 8286 / 8287 octal bus transceiver is used this
signal acts as an output enable signal. It is active low.

DT / R’ (Output) Pin No. 27. Data Transmit / Receive. When Intel 8286 / 8287 octal bus
transceiver is used this signal controls the direction of data flow through the transceiver. When it
is HIGH data are sent out. When it is LOW data are received.

M /10’ (Output) Pin No. 28. Memory or I/O access. When it is HIGH the CPU wants to access
memory. When it is LOW the CPU wants to access 1/0 device.

WR' (Output): Pin No. 29 Write. When it is LOW the CPU performs memory or I/O write
operation.

HLDA(Output): Pin No. 30. HOLD acknowledge. It is issued by the processor when it receives
HOLD signal. It is active HIGH signal. When HOLD request is removed HLDA goes LOW.

HOLD (Input) Pin No. 31. Hold. When another device in microcomputer system system wants to
use the address and data bus, it sends a HOLD request to CPU through this pin. It is an active
HIGH signal.

Pin description for Maximum Mode:

For the maximum mode of operation the pin MN / MX' is connected to Ground, i.e., MN / MX'
= Vcc. The description of the pins from 24 to 31 for the maximum mode is as follows:

QS1, QSO (Output) : Pin No. 24, 25. Instruction Queue Status. Logics are given below:

QS1 QS2 Function

No Operation

1% byte of opcode from queue

Empty the queue

Rk O|O

R OO

Subsequent byte from gqueue

Table 4.1: Functions of QS1 and QS2

S2, S1, SO (Output) 26+28 STATUS: active during T4, T1, and T2 and is returned to the

passive state (1, 1, 1) during T3 or during TW when READY is HIGH. This status is used by the
8288 Bus Controller to generate all memory and 1/0 access control signals. Any change by S2,
S1, or SO during T4 is used to indicate the beginning of a bus cycle, and the return to the passive
state in T3 or TW is used to indicate the end of a bus cycle

S2 S1 SO Function
0 0 0 Interrupt Acknowledge
0 0 1 Read 1/0O Port
0 1 0 Write 1/0 Port
0 1 1 Halt
1 0 0 Code access
1 0 1 Write memory
1 1 0 Passive state
1 1 1

Table 4.1: Functions of S2, S1 and SO

LOCK (O)

It indicates to another system bus master, not to gain control of the system bus while LOCK is
active Low. The LOCK signal is activated by the "LOCK" prefix instruction and remains active
until the completion of the instruction. This signal is active Low and floats to tri-state OFF
during 'hold acknowledge'.

RQ/GTO0 and RQ/GT1 (1/0): Request/Grant

These pins are used by other processors in a multi processor organization. Local bus masters of
other processors force the processor to release the local bus at the end of the processors current
bus cycle. Each pin is bi-directional and has an internal pull up resistors. Hence they may be left
un-connected.

LECTURE 3: ADDRESSING MODES OF 8086

3. ADDRESSING MODES

Addressing mode indicates a way of locating data or operands. Depending upon the data
types used in the instruction and the memory addressing modes, any instruction may belong to
one or more addressing modes, or some instruction may not belong to any of the addressing
modes. Thus the addressing modes describe the types of operands and the way they are accessed
for executing an instruction. Here, we will present the addressing modes of the instructions
depending upon their types. According to the flow of instruction execution, the instructions may
be categorized as

i. Sequential control flow instructions and

ii. Control transfer instructions

Sequential control flow instructions are the instructions, which after execution, transfer
control to the next instruction appearing immediately after it (in the sequence) in the program.
For example, the arithmetic, logical, data transfer and processor control instructions are
sequential control flow instructions. The control transfer instructions, on the other hand, transfer
control to some predefined address somehow specified in the instruction after their execution.
For example, INT, CALL, RET and JUMP instructions fall under this category.

The addressing modes for sequential control transfer instructions are explained as follows:

1. Immediate: In this type of addressing, immediate data is a part of instruction, and appears
in the form of successive byte or bytes.

Example: MOV AX, 0005H

In the above example, 0005H is the immediate data. The immediate data may be 8-bit or
16-bit in size.

2. Direct: In the direct addressing mode, a 16-bit memory address (offset) is directly
specified in the instruction as a part of it.

Example: MOV AX, [5000H]

Here, data resides in a memory location in the data segment, whose effective address may
be computed using 5000H as the offset address and content of DS as segment address.
The effective address, here, is 10H*DS+5000H.

3. Register: In the direct addressing mode, the data is stored in a register and it is referred
using the particular register. All the registers, except IP, may be used in this mode.

Example: MOV BX, AX
4. Register Indirect: Sometimes, the address of the memory location, which contains data or
operand, is determined in an indirect way, using the offset registers. This mode of

addressing is known as register indirect mode. In this addressing mode, the offset address
of data is in either BX or Sl or DI registers. The default segment is either DS or ES. The
data is supposed to be available at the address pointed to by the content of any of the
above registers in the default data segment.

Example: MOV AX, [BX]

Here, data is present in a memory location in DS whose offset address is in BX. The
effective address of the data is given as 10H*DS+ [BX].

Indexed: In this addressing mode, offset of the operand is stored in one of the index
registers. DS and ES are the default segments for index registers SI and DI respectively.
This mode is a special case of the above discussed register indirect addressing mode.

Example: MOV AX,[SI]

Here, data is available at an offset address stored in Sl in DS. The effective address, in
this case, is computed as 10H*DS+ [SI].

Register Relative: In this addressing mode, the data is available at an effective address
formed by adding an 8-bit or 16-bit displacement with the content of any one of the
registers BX, BP, Sl and DI in the default (either DS or ES) segment. The example given
before explains this mode.

Example: MOV AX, 50H [BX]

Here, effective address is given as 10H*DS+50H+ [BX].

Based Indexed: The effective address of data is formed, in this addressing mode, by
adding content of a base register (any one of BX or BP) to the content of an index
register (any one of Sl or DI). The default segment register may be ES or DS.

Example: MOV AX, [BX] [SI]

Here, BX is the base register and Sl is the index register. The effective address is
computed as 10H*DS+ [BX] + [SI].

Relative Based Indexed: The effective address is formed by adding an 8-bit or 16-bit
displacement with the sum of contents of any one of the bases registers (BX or BP) and
any one of the index registers, in a default segment.

Example: MOV AX, 50H [BX] [SI]

Here, 50H is an immediate displacement, BX is a base register and Sl is an index register.
The effective address of data is computed as 160H*DS+ [BX]+ [SI] + 50H.

10

LECTURE 4: 8086 INSTRUCTION SET

4. 8086 INSTRUCTION SET
The 8086 microprocessor supports 8 types of instructions —

o Data Transfer Instructions
e Arithmetic Instructions
« Bit Manipulation Instructions
e String Instructions
e Program Execution Transfer Instructions (Branch & Loop Instructions)
e Processor Control Instructions
e Iteration Control Instructions
e Interrupt Instructions
Let us now discuss these instruction sets in detail.

Data Transfer Instructions

These instructions are used to transfer the data from the source operand to the destination
operand. Following are the list of instructions under this group —
Instruction to transfer a word

e MOV — Used to copy the byte or word from the provided source to the provided

destination.

e PPUSH — Used to put a word at the top of the stack.

e POP — Used to get a word from the top of the stack to the provided location.

e PUSHA — Used to put all the registers into the stack.

e POPA — Used to get words from the stack to all registers.

e XCHG — Used to exchange the data from two locations.

e XLAT — Used to translate a byte in AL using a table in the memory.
Instructions for input and output port transfer

e [N — Used to read a byte or word from the provided port to the accumulator.

e OUT — Used to send out a byte or word from the accumulator to the provided port.
Instructions to transfer the address

e LEA — Used to load the address of operand into the provided register.

e LDS — Used to load DS register and other provided register from the memory

e LES — Used to load ES register and other provided register from the memory.
Instructions to transfer flag registers

e LAHF — Used to load AH with the low byte of the flag register.

e SAHF — Used to store AH register to low byte of the flag register.

e PUSHF — Used to copy the flag register at the top of the stack.

e POPF — Used to copy a word at the top of the stack to the flag register.

Arithmetic Instructions

11

These instructions are used to perform arithmetic operations like addition, subtraction,
multiplication, division, etc.
Following is the list of instructions under this group —
Instructions to perform addition
e ADD — Used to add the provided byte to byte/word to word.
e ADC — Used to add with carry.
e INC — Used to increment the provided byte/word by 1.
o AAA — Used to adjust ASCII after addition.
e DAA — Used to adjust the decimal after the addition/subtraction operation.
Instructions to perform subtraction
e SUB — Used to subtract the byte from byte/word from word.
SBB — Used to perform subtraction with borrow.
DEC — Used to decrement the provided byte/word by 1.
NPG — Used to negate each bit of the provided byte/word and add 1/2’s complement.
CMP — Used to compare 2 provided byte/word.
AAS — Used to adjust ASCII codes after subtraction.
DAS — Used to adjust decimal after subtraction.
Instruction to perform multiplication
e MUL — Used to multiply unsigned byte by byte/word by word.
e IMUL — Used to multiply signed byte by byte/word by word.
e AAM — Used to adjust ASCII codes after multiplication.
Instructions to perform division
e DIV — Used to divide the unsigned word by byte or unsigned double word by word.
e IDIV — Used to divide the signed word by byte or signed double word by word.
e AAD — Used to adjust ASCII codes after division.
e CBW — Used to fill the upper byte of the word with the copies of sign bit of the lower
byte.
e CWD — Used to fill the upper word of the double word with the sign bit of the lower
word.

Bit Manipulation Instructions

These instructions are used to perform operations where data bits are involved, i.e. operations
like logical, shift, etc.
Following is the list of instructions under this group —
Instructions to perform logical operation
e NOT — Used to invert each bit of a byte or word.
e AND — Used for adding each bit in a byte/word with the corresponding bit in another
byte/word.
e OR — Used to multiply each bit in a byte/word with the corresponding bit in another
byte/word.
e XOR — Used to perform Exclusive-OR operation over each bit in a byte/word with the
corresponding bit in another byte/word.
e TEST — Used to add operands to update flags, without affecting operands.
Instructions to perform shift operations

12

SHL/SAL — Used to shift bits of a byte/word towards left and put zero(S) in LSBs.

SHR — Used to shift bits of a byte/word towards the right and put zero(S) in MSBs.

SAR — Used to shift bits of a byte/word towards the right and copy the old MSB into the
new MSB.

Instructions to perform rotate operations

ROL — Used to rotate bits of byte/word towards the left, i.e. MSB to LSB and to Carry
Flag [CF].

ROR — Used to rotate bits of byte/word towards the right, i.e. LSB to MSB and to Carry
Flag [CF].

RCR — Used to rotate bits of byte/word towards the right, i.e. LSB to CF and CF to
MSB.

RCL — Used to rotate bits of byte/word towards the left, i.e. MSB to CF and CF to LSB.

String Instructions

String is a group of bytes/words and their memory is always allocated in a sequential order.
Following is the list of instructions under this group —

REP — Used to repeat the given instruction till CX # 0.

REPE/REPZ — Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.
REPNE/REPNZ — Used to repeat the given instruction until CX = 0 or zero flag ZF = 1.
MOVS/MOVSB/MOVSW - Used to move the byte/word from one string to another.
COMS/COMPSB/COMPSW — Used to compare two string bytes/words.
INS/INSB/INSW — Used as an input string/byte/word from the 1/O port to the provided
memory location.

OUTS/OUTSB/OUTSW — Used as an output string/byte/word from the provided
memory location to the 1/O port.

SCAS/SCASB/SCASW — Used to scan a string and compare its byte with a byte in AL
or string word with a word in AX.

LODS/LODSB/LODSW - Used to store the string byte into AL or string word into AX.

Program Execution Transfer Instructions (Branch and Loop Instructions)

These instructions are used to transfer/branch the instructions during an execution. It includes
the following instructions —
Instructions to transfer the instruction during an execution without any condition —

CALL — Used to call a procedure and save their return address to the stack.
RET — Used to return from the procedure to the main program.
JMP — Used to jump to the provided address to proceed to the next instruction.

Instructions to transfer the instruction during an execution with some conditions —

JA/INBE — Used to jump if above/not below/equal instruction satisfies.
JAE/INB — Used to jump if above/not below instruction satisfies.

JBE/JINA — Used to jump if below/equal/ not above instruction satisfies.

JC — Used to jump if carry flag CF =1

JE/JZ — Used to jump if equal/zero flag ZF = 1

JG/INLE — Used to jump if greater/not less than/equal instruction satisfies.
JGE/JINL — Used to jump if greater than/equal/not less than instruction satisfies.

13

JL/INGE — Used to jump if less than/not greater than/equal instruction satisfies.
JLE/ING — Used to jump if less than/equal/if not greater than instruction satisfies.
JNC — Used to jump if no carry flag (CF = 0)

JNE/INZ — Used to jump if not equal/zero flag ZF =0

JNO — Used to jump if no overflow flag OF = 0

JNP/JPO — Used to jump if not parity/parity odd PF = 0

JNS — Used to jump if not sign SF =0

JO — Used to jump if overflow flag OF = 1

JP/JPE — Used to jump if parity/parity even PF =1

JS — Used to jump if sign flag SF = 1

Processor Control Instructions

These instructions are used to control the processor action by setting/resetting the flag values.
Following are the instructions under this group —

STC — Used to set carry flag CF to 1

CLC — Used to clear/reset carry flag CF to 0

CMC — Used to put complement at the state of carry flag CF.

STD — Used to set the direction flag DF to 1

CLD — Used to clear/reset the direction flag DF to 0

STI — Used to set the interrupt enable flag to 1, i.e., enable INTR input.
CLI — Used to clear the interrupt enable flag to 0, i.e., disable INTR input.

Iteration Control Instructions

These instructions are used to execute the given instructions for number of times. Following is
the list of instructions under this group —

LOOP — Used to loop a group of instructions until the condition satisfies, i.e., CX =0
LOOPE/LOOPZ — Used to loop a group of instructions till it satisfies ZF =1 & CX =0
LOOPNE/LOOPNZ — Used to loop a group of instructions till it satisfies ZF = 0 & CX
=0

JCXZ — Used to jump to the provided address if CX =0

Interrupt Instructions

These instructions are used to call the interrupt during program execution.

INT — Used to interrupt the program during execution and calling service specified.
INTO — Used to interrupt the program during execution if OF = 1
IRET — Used to return from interrupt service to the main program

14

Sample Assembly Language Program:

1. Write an assembly language program in 8086 to add two 16-bit numbers.

PROGRAM:
LABEL OPCODE | OPERAND | COMMENTS
START MOV CX, 9273 Get 16-bit data in AX
MOV DX, 2464 Get another 16-bit data in DX
ADD CX, DX (CX) — (CX) + (DX)
END INT3 Halt the program

15

MODULE 5

LECTURE 1: ARCHITECTURE OF 8051

1. 8051 MICROCONTROLLER

The 8051 Microcontroller was designed in 1980’s by Intel. Its foundation was on Harvard
Architecture and was developed principally for bringing into play in Embedded Systems. At first
it was created by means of NMOS technology but as NMOS technology needs more power to
function therefore Intel re-intended Microcontroller 8051 employing CMOS technology and a
new edition came into existence with a letter ‘C’ in the title name, for illustration: 80C51. These
most modern Microcontrollers need fewer amount of power to function in comparison to their
forerunners.

There are two buses in 8051 Microcontroller one for program and other for data. As a result,
it has two storage rooms for both program and data of 64K by 8 size. The microcontroller
comprise of 8 bit accumulator & 8 bit processing unit. It also consists of 8 bit B register as
majorly functioning blocks and 8051 microcontroller programming is done with embedded C
Language using Keil software. It also has a number of other 8 bit and 16 bit registers.

For internal functioning & processing Microcontroller 8051 comes with integrated built-in
RAM. This is prime memory and is employed for storing temporary data. It is unpredictable
memory i.e. its data can get be lost when the power supply to the Microcontroller switched OFF.

1.1. 8051 MICROCONTROLLER ARCHITECTURE

Microcontroller 8051 block diagram is shown below. Let’s have a closer look on features of
8051 microcontroller design:

External Interrupts
4K byte 128 AR, Counter
Interrupt Control ROM { Timer.o Inputs
\ 4 l
Bus Serial
QSC Control I/O Ports Port
HH
L I
" TXD RXD
PO P2 P1 P3
(Address/Data)

Figure 4.1: Block Diagram of 8051 Microcontroller

CPU (Central Processor Unit):
As we may be familiar that Central Processor Unit or CPU is the mind of any processing
machine. It scrutinizes and manages all processes that are carried out in the Microcontroller.
User has no power over the functioning of CPU. It interprets program printed in storage space
(ROM) and carries out all of them and do the projected duty. CPU manages different types of
registers in 8051 microcontroller.

Interrupts:

As the heading put forward, Interrupt is a sub-routine call that reads the Microcontroller’s key
function or job and helps it to perform some other program which is extra important at that point
of time. The characteristic of 8051 Interrupt is extremely constructive as it aids in emergency
cases. Interrupts provides us a method to postpone or delay the current process, carry out a sub-
routine task and then all over again restart standard program implementation.

The Micro-controller 8051 can be assembled in such a manner that it momentarily stops or break
the core program at the happening of interrupt. When sub-routine task is finished then the
implementation of core program initiates automatically as usual. There are 5 interrupt supplies in
8051 Microcontroller, two out of five are peripheral interrupts, two are timer interrupts and one
is serial port interrupt.

Memory:

Micro-controller needs a program which is a set of commands. This program enlightens
Microcontroller to perform precise tasks. These programs need a storage space on which they
can be accumulated and interpret by Microcontroller to act upon any specific process. The
memory which is brought into play to accumulate the program of Microcontroller is recognized
as Program memory or code memory. In common language it’s also known as Read Only
Memory or ROM.

Microcontroller also needs a memory to amass data or operands for the short term. The storage
space which is employed to momentarily data storage for functioning is acknowledged as Data
Memory and we employ Random Access Memory or RAM for this principle reason.
Microcontroller 8051 contains code memory or program memory 4K so that is has 4KB Rom
and it also comprise of data memory (RAM) of 128 bytes.

Bus:

Fundamentally Bus is a group of wires which functions as a communication canal or mean for
the transfer Data. These buses comprise of 8, 16 or more cables. As a result, a bus can bear 8
bits, 16 bits all together. There are two types of buses:

1. Address Bus: Microcontroller 8051 consists of 16 bit address bus. It is brought into play
to address memory positions. It is also utilized to transmit the address from Central
Processing Unit to Memory.

2. Data Bus: Microcontroller 8051 comprise of 8 bits data bus. It is employed to cart data.

Oscillator:

As we all make out that Microcontroller is a digital circuit piece of equipment, thus it needs
timer for its function. For this function, Microcontroller 8051 consists of an on-chip oscillator
which toils as a time source for CPU (Central Processing Unit). As the productivity thumps of

oscillator are steady as a result, it facilitates harmonized employment of all pieces of 8051
Microcontroller. Input/output Port: As we are acquainted with that Microcontroller is employed
in embedded systems to manage the functions of devices.

Thus to gather it to other machinery, gadgets or peripherals we need 1/O (input/output)
interfacing ports in Micro-controller. For this function Micro-controller 8051 consists of 4
input/output ports to unite it to other peripherals. Timers / Counters: Micro-controller 8051 is
incorporated with two 16 bit counters & timers. The counters are separated into 8 bit registers.
The timers are utilized for measuring the intervals, to find out pulse width etc.

1.2. 8051 MICROCONTROLLER MEMORY ORGANIZATION

The 8051 Microcontroller Memory is separated in Program Memory (ROM) and Data Memory
(RAM). The Program Memory of the 8051 Microcontroller is used for storing the program to be
executed i.e. instructions. The Data Memory on the other hand, is used for storing temporary
variable data and intermediate results.

Program Memory (ROM) of 8051 Microcontroller

In 8051 Microcontroller, the code or instructions to be executed are stored in the Program
Memory, which is also called as the ROM of the Microcontroller. The original 8051
Microcontroller by Intel has 4KB of internal ROM.

Some variants of 8051 like the 8031 and 8032 series doesn’t have any internal ROM (Program
Memory) and must be interfaced with external Program Memory with instructions loaded in it.
Almost all modern 8051 Microcontrollers, like 8052 Series, have 8KB of Internal Program
Memory (ROM) in the form of Flash Memory (ROM) and provide the option of reprogramming
the memory.

CPU
(ALU, CU)

PROGRAM
MEMORY
(ROM)

Figure 4.2a

In case of 4KB of Internal ROM, the address space is 0000H to OFFFH. If the address space i.e.
the program addresses exceed this value, then the CPU will automatically fetch the code from the
external Program Memory.

For this, the External Access Pin (EA Pin) must be pulled HIGH i.e. when the EA Pin is high,
the CPU first fetches instructions from the Internal Program Memory in the address range of

0000H to OFFFFH and if the memory addresses exceed the limit, then the instructions are
fetched from the external ROM in the address range of 1000H to FFFFH.

+5Vv FFFFH
t EXTERNAL
EA PROGRAM
(EA Pinis 1) MEMORY
(ROM)
&64K
T1000H
[
OFFFH
INTERNAL
PROGRAM
MEMORY
(ROM)
4K
OOO0OO0H
Figure 4.2b

There is another way to fetch the instructions: ignore the Internal ROM and fetch all the
instructions only from the External Program Memory (External ROM). For this scenario, the EA
Pin must be connected to GND. In this case, the memory addresses of the external ROM will be
from 0000H to FFFFH.

FFFFH
A EXTERNAL
I h PROGRAM
== MEMORY
(EA Pin is 0) 8051 MICROCONTROLLER |={i- (ROM)
- 000OH
I}QERM{
PROGRAM
MEM®GRY
PLUTN
by
Figure 4.2c

Data Memory (RAM) of 8051 Microcontroller

The Data Memory or RAM of the 8051 Microcontroller stores temporary data and intermediate
results that are generated and used during the normal operation of the microcontroller. Original
Intel’s 8051 Microcontroller had 128B of internal RAM.

But almost all modern variants of 8051 Microcontroller have 256B of RAM. In this 256B, the
first 128B i.e. memory addresses from 00H to 7FH is divided in to Working Registers (organized
as Register Banks), Bit — Addressable Area and General Purpose RAM (also known as
Scratchpad area).

In the first 128B of RAM (from O0H to 7FH), the first 32B i.e. memory from addresses 00H to

1FH consists of 32 Working Registers that are organized as four banks with 8 Registers in each
Bank.

7FH FFH EFH
80 FOHJB
General R -
Purpose oon| Psw
Registers
BBH| IP
28 eoH | p= 128B for
16 AsH|IE SFRs .
Bit-Addressable AoH | P2 (Special 128B Additional
Registers o421 FLITLA Function Memory
20H FOH [P1 registers)
1FH [R7
BANK3 genlmy
RIS gl
BANK2 8%H [TMoD
L 2%H |FE8N
BANK1
S?H E? &83H |DPH
BANKO aig|sEt
O0H RO B80OH PO BOH
Lower 128B (O0OH - 7FH) Upper 128B (80H - FFH)
(Direct and Indirect (Direct Addressing) (Indirect Addressing)
Addressing)

Figure 4.3: Data Memory of 8051

The 4 banks are named as BankO, Bank1, Bank2 and Bank3. Each Bank consists of 8 registers
named as RO — R7. Each Register can be addressed in two ways: either by name or by address.
To address the register by name, first the corresponding Bank must be selected. In order to select
the bank, we have to use the RSO and RS1 bits of the Program Status Word (PSW) Register (RS0
and RS1 are 3 and 4™ bits in the PSW Register).

When addressing the Register using its address i.e. 12H for example, the corresponding Bank
may or may not be selected. (12H corresponds to R2 in Bank2).

The next 16B of the RAM i.e. from 20H to 2FH are Bit — Addressable memory locations. There
are totally 128 bits that can be addressed individually using O0H to 7FH or the entire byte can be
addressed as 20H to 2FH.

For example 32H is the bit 2 of the internal RAM location 26H.

The final 80B of the internal RAM i.e. addresses from 30H to 7FH, is the general purpose RAM
area which are byte addressable.

These lower 128B of RAM can be addressed directly or indirectly.

The upper 128B of the RAM i.e. memory addresses from 80H to FFH is allocated for Special
Function Registers (SFRs). SFRs control specific functions of the 8051 Microcontroller. Some of
the SFRs are 1/0 Port Registers (PO, P1, P2 and P3), PSW (Program Status Word), A
(Accumulator), IE (Interrupt Enable), PCON (Power Control), etc.

Name of the Register | Function _Internal RAM Address (HEX)
ACC Accumulator EOH
B B Register (for Anthmetic) FOH
DPH Addressing External Memory &3H
DPL Addressing External Memorv 82H
IE Interrupt Enable Control ABH
1P Interrupt Priority BE&H
PO PORT 0 Latch 80H
P1 PORT 1 Latch 90H
P2 PORT 2 Latch AOH
P3 PORT 3 Latch BOH
PCON Power Control &7H
PSW Program Status Word DOH
SCON Seral Port Control O8H
SBUF Serial Port Data Buffer 9oH
sSP Stack Pointer &1H
TMOD Timer / Counter Mode Control 80H
TCON Timer / Counter Control 88H
TLO Timer 0 LOW Byvte SAH
THO Timer 0 HIGH Byte 8CH
TL1 Timer 1 LOW Bvte eBH
TH1 Timer 1 HIGH Byte SDH
Table 4.1

SRFs Memory addresses are only direct addressable. Even though some of the addresses
between 80H and FFH are not assigned to any SFR, they cannot be used as additional RAM area.
In some microcontrollers, there is an additional 128B of RAM, which share the memory address
with SFRs i.e. 80H to FFH. But, this additional RAM block is only accessed by indirect
addressing.

LECTURE 2: PIN DESCRIPTION OF 8051

2. 8051 MICROCONTROLLER PIN DIAGRAM

As mentioned in the previous tutorial, 8051 Microcontroller is available in a variety of packages
like 40 — pin DIP or 44 — lead PLCC and TQFP. The pin orientation of an 8051 Microcontroller
may change with the package but the Pin Configuration is same.

The following image shows the 8051 Microcontroller Pin Diagram with respect to a 40 — pin
Dual In-line Package (DIP).

_/
P1.0]1 40 [JVvCC
P1.1[]2 39 [P0.0 (ADO)
P1.23 38 [1 P0.1 (AD1)
P1.3[]4 37 [P0.2 (AD2)
P1.4]5 36 |1 P0.3 (AD3)
P1.5[]6 35 |71 P0.4 (AD4)
P1.6]7 34 [1 P0.5 (ADS)
P1.70C]|8 33 [P0.6 (ADS6)
RST]9 32 [1 P0.7 (AD7)

(RXD)P3.0L]10 805] 31 [EAVPP

(TXD) P3.1] 11 30 [J ALE/PROG

(INTO) P3.2] 12 29 |1 PSEN

(INT1) P3.3] 13 28 [1P2.7 (A15)

(TO) P3.4 | 14 27 |1 P2.6 (A14)
(T1) P3.5] 15 26 [1P2.5 (A13)
(WR) P3.6 | 16 25|11 P2.4 (A12)
(RD) P3.7] 17 24[1P2.3 (A11)
XTAL2 [] 18 231 P2.2 (A10)
XTAL1] 19 22 [P2.1 (A9)
GND [] 20 2111 P2.0 (A8)

40 - PIN DIP

Figure 4.4: Pin Diagram of 8051 Microcontroller

Since it is a 40 — pin DIP IC, each side contains 20 Pins. We have also seen that there other
packages of 8051 like the 44 — Lead PLCC and the 44 — Lead TQFP. The following image shows
the 8051 Microcontroller Pin Diagram for these packages specifically.

The Pin Description or Pin Configuration of the 8051 Microcontroller will describe the functions
of each pins of the 8051 Microcontroller. Let us now see the pin description.

Pins 1 — 8 (PORT 1): Pins 1 to 8 are the PORT 1 Pins of 8051. PORT 1 Pins consists of 8 — bit
bidirectional Input / Output Port with internal pull — up resistors. In older 8051 Microcontrollers,
PORT 1 doesn’t serve any additional purpose but just 8 — bit 1/O PORT.

In some of the newer 8051 Microcontrollers, few PORT 1 Pins have dual functions. P1.0 and
P1.1 act as Timer 2 and Timer 2 Trigger Input respectively.

P1.5, P1.6 and P1.7 act as In-System Programming Pins i.e. MOSI, MISO and SCK respectively.
Pin 9 (RST): Pin 9 is the Reset Input Pin. It is an active HIGH Pin i.e. if the RST Pin is HIGH
for a minimum of two machine cycles, the microcontroller will be reset. During this time, the
oscillator must be running.

Pins 10 — 17 (PORT 3): Pins 10 to 17 form the PORT 3 pins of the 8051 Microcontroller. PORT
3 also acts as a bidirectional Input / Output PORT with internal pull-ups. Additionally, all the
PORT 3 Pins have special functions. The following table gives the details of the additional
functions of PORT 3 Pins.

\PORT 3 Pin HFunction HDescription

\P3.0 HRXD HSeriaI Input

P3.1 ITXD |Iserial Output

\P3.2 HINTO HExternaI Interrupt O

\P3.3 HINTl HExternaI Interrupt 1

P3.4 o |Timer 0

P3.5 T |Timer 1

\P3.6 HWR HExternaI Memory Write

\P3.7 HRD HExternaI Memory Read
Table 4.2

Pins 18 & 19: Pins 18 and 19 i.e. XTAL 2 and XTAL 1 are the pins for connecting external
oscillator. Generally, a Quartz Crystal Oscillator is connected here.

Pin 20 (GND): Pin 20 is the Ground Pin of the 8051 Microcontroller. It represents OV and is
connected to the negative terminal (OV) of the Power Supply.

Pins 21 — 28 (PORT 2): These are the PORT 2 Pins of the 8051 Microcontroller. PORT 2 is also
a Bidirectional Port i.e. all the PORT 2 pins act as Input or Output. Additionally, when external
memory is interfaced, PORT 2 pins act as the higher order address byte. PORT 2 Pins have
internal pull-ups.

Pin 29 (PSEN): Pin 29 is the Program Store Enable Pin (PSEN). Using this pins, external
Program Memory can be read.

Pin 30 (ALE/PROG): Pin 30 is the Address Latch Enable Pin. Using this Pins, external address
can be separated from data (as they are multiplexed by 8051).

During Flash Programming, this pin acts as program pulse input (PROG).

Pin 31 (EA/VPP): Pin 31 is the External Access Enable Pin i.e. allows external Program
Memory. Code from external program memory can be fetched only if this pin is LOW. For
normal operations, this pins is pulled HIGH.

During Flash Programming, this Pin receives 12V Programming Enable Voltage (VPP).

Pins 32 — 39 (PORT 0): Pins 32 to 39 are PORT 0 Pins. They are also bidirectional Input /
Output Pins but without any internal pull-ups. Hence, we need external pull-ups in order to use
PORT 0 pins as I/0 PORT.

In addition to acting as 1/O PORT, PORT 0 also acts as lower order address/data bus when
external memory is accessed.

Pin 40 (VCC): Pin 40 is the power supply pin to which the supply voltage is given (+5V).

8051 Microcontroller Basic Circuit

Now that we have seen the 8051 Microcontroller Pin Diagram and corresponding Pin
Description, we will proceed to the basic circuit or schematic of the 8051 Microcontroller. The
following image shows the basic circuit of the 8051 Microcontroller.

+5V

- B
Butionq 3 Pins 1 -8
7
Cc1 Il

T +5V
10pF/16V
T . Pins 32 - 39 PORT O
g Pin 9

10KQ +5V
Pins 10-17 T
PN3Y —

10K

) Pin 30
33pF I 11.0592MHz B 18 Pin 29
L

32;2H —] Pin 19 Pins 21 - 28
~— Pin 20

8051 Microcontroller

?

Figure 4.5: 8051 Microcontroller Basic Circuit

his basic circuit of 8051 microcontroller is the minimal interface required for it to work. The
basic circuit includes a Reset Circuit, the oscillator circuit and power supply. Let us discuss a
little bit deeper about this basic circuit of 8051 Microcontroller.

First is the power supply. Pins 40 and 20 (VCC and GND) of the 8051 Microcontroller are
connected to +5V and GND respectively.

Next is the Reset Circuit. A logic HIGH (+5V) on Reset Pin for a minimum of two machine
cycles (24 clock cycles) will reset the 8051 Microcontroller. The reset circuit of the 8051
Microcontroller consists of a capacitor, a resistor and a push button and this type of reset circuit
provides a Manual Reset Option. If you remove the push button, then the reset circuit becomes a
Power-On Reset Circuit.

The next part of the basic circuit of the 8051 Microcontroller is the Oscillator Circuit or the
Clock Circuit. A Quartz Crystal Oscillator is connected across XTAL1 and XTAL2 pins i.e. Pins
19 and 18. The capacitors C1 and C2 can be selected in the range of 20pF to 40pF.

As mentioned in the 8051 Microcontroller Pin Description, PORTS 1, 2 and 3, all have internal

pull — ups and hence can be directly used as Bidirectional 1/0O Ports. But, we need to add external
Pull — ups for PORT 0 Pins in order to use it as an 1/O Port.

Generally, a 1KQ Resistor Pack of 8 Resistors is used as a Pull — up for the PORT 0 of the 8051
Microcontroller.

10

LECTURE 3: INSTRUCTION SET OF 8051

3. 8051 MICROCONTROLLER INSTRUCTION SET

Writing a Program for any Microcontroller consists of giving commands to the Microcontroller
in a particular order in which they must be executed in order to perform a specific task. The
commands to the Microcontroller are known as a Microcontroller’s Instruction Set.

Just as our sentences are made of words, a Microcontroller’s (for that matter, any computer)
program is made of Instructions. Instructions written in a program tell the Microcontroller which
operation to carry out.

An Instruction Set is unique to a family of computers. This tutorial introduces the 8051
Microcontroller Instruction Set also called as the MCS-51 Instruction Set.

As the 8051 family of Microcontrollers are 8-bit processors, the 8051 Microcontroller Instruction
Set is optimized for 8-bit control applications. As a typical 8-bit processor, the 8051
Microcontroller instructions have 8-bit Opcodes. As a result, the 8051 Microcontroller
instruction set can have up to 28 = 256 Instructions.

A Brief Look at 8051 Microcontroller Instructions and Groups

Before going into the details of the 8051 Microcontroller Instruction Set, Types of Instructions
and the Addressing Mode, let us take a brief look at the instructions and the instruction groups of
the 8051 Microcontroller Instruction Set (the MCS-51 Instruction Set).

The following table shows the 8051 Instruction Groups and Instructions in each group. There are
49 Instruction Mnemonics in the 8051 Microcontroller Instruction Set and these 49 Mnemonics
are divided into five groups.

?QXQSFER ARITHMETIC LOGICAL BOOLEAN EggﬁgﬁmG

IMOV IADD IIANL ICLR ILIMP |
IMOVC IADDC IORL ISETB lAIMP |
IMOVX lsuBB IXRL MOV Isimp |
IPUSH lINC ICLR lic iz |
POP IDEC lcPL line liNzZ |
IXCH IMUL IRL B ICINE |
IXCHD DIV IRLC lINB IDINZ |
| IDA A IRR uBC INOP |
| [IRRC IANL ILCALL |
| [IswAP IORL IACALL |
H H lcPL	RET			
				RETI
H H	lomp			

Table 4.3

11

A simple instruction consists of just the opcode. Other instructions may include one or more
operands. Instruction can be one-byte instruction, which contains only opcode, or two-byte
instructions, where the second byte is the operand or three byte instructions, where the operand
makes up the second and third byte.
Based on the operation they perform, all the instructions in the 8051 Microcontroller Instruction
Set are divided into five groups. They are:

« Data Transfer Instructions

o Arithmetic Instructions

o Logical Instructions

« Boolean or Bit Manipulation Instructions

e Program Branching Instructions
We will now see about these instructions briefly.

Data Transfer Instructions
The Data Transfer Instructions are associated with transfer with data between registers or

external program memory or external data memory. The Mnemonics associated with Data
Transfer are given below.

o MOV

o MOVC
o MOV X
o PUSH
o POP

[] XCH

« XCHD

The following table lists out all the possible data transfer instruction along with other details like
addressing mode, size occupied and number machine cycles it takes.

12

A ata Immedite

MOV A, #Data 2 1
A, Rn A € Rn Register 1 1

A, Direct A € (Direct) Direct 2 1

A, @Ri A € @Ri Indirect 1 1

Rn, #Data Rn € data Immediate 2 1

Rn, A Rn € A Register 1 1

Rn, Direct Rn € (Direct) Direct 2 2

Direct, A (Direct) € A Direct 2 1

Direct, Rn (Direct) € Rn Direct 2 2

Direct1, Direct2 (Directl) € (Direct2) Direct 3 2

Direct, @Ri (Direct) € @Ri Indirect 2 2

Direct, #Data (Direct) € #Data Direct 3 2

@Ri, A @Ri € A Indirect 1 1

(@Ri, Direct @Ri € Direct Indirect 2 2

@R, #Data @Ri € #Data Indirect 2 1

DPTR, #Datal6 DPTR € #Datal6 Immediate 3 2

MOVC A, @A+DPTR A € Code Pointed by A+DPTR Indexed 1 2
A, @A+PC A € Code Pointed by A+PC Indexed 1 2

A, @Ri A € Code Pointed by Ri (8-bit Address) Indirect 1 2

MOVX A, @DPTR A € External Data Pointed by DPTR Indirect 1 2
@Ri, A @Ri € A (External Data 8-bit Addr) Indirect 1 2

@DPTR, A @DPTR € A (External Data 16-bit Addr) Indirect 1 2
ELECTRONICS SEH06

PUSH Direct Stack Pointer SP € (Direct) Direct 2 2
POP Direct (Direct) € Stack Pointer SP Direct 2 2
XCH Rn Exchange ACC with Rn Register 1 1
Direct Exchange ACC with Direct Byte Direct 2 1

@Ri Exchange ACC with Indirect RAM Indirect 1 1

XCHD A, @Ri Exchange ACC with Lower Order Indirect RAM Indirect 1 1

Table 4.4
Arithmetic Instructions

Using Arithmetic Instructions, you can perform addition, subtraction, multiplication and
division. The arithmetic instructions also include increment by one, decrement by one and a
special instruction called Decimal Adjust Accumulator.

The Mnemonics associated with the Arithmetic Instructions of the 8051 Microcontroller
Instruction Set are:

« ADD
o ADDC
« SUBB
. INC

« DEC

13

« MUL
« DIV
« DAA

The arithmetic instructions has no knowledge about the data format i.e. signed, unsigned, ASCI|,
BCD, etc. Also, the operations performed by the arithmetic instructions affect flags like carry,
overflow, zero, etc. in the PSW Register.

All the possible Mnemonics associated with Arithmetic Instructions are mentioned in the
following table.

“ADD | A #Data A € A +Data

Immediate 2 1
A.Rn A€ A+Rn Register 1 1
A, Direct A € A + (Direct) Direct 2 1
A. @Ri A € A+ @Ri Indirect 1 1
ADDC A, #Data A< A+Data+C Immediate 2 1
A.Rn A€CA+Rn+C Register 1 1
A. Direct A € A + (Direct) + C Direct 2 1
A, @Ri A€A+@Ri+C Indirect 1 1
SUBB A. #Data A< A-Data-C Immediate 2 1
A.Rn A€ A-Rn-C Register 1 1
A, Direct A € A — (Direct) - C Direct 2 1
A. @Ri A€A-@Ri-C Indirect 1 1
Multiply A with B
MUL AB (A € Lower Byte of A*B and B -- 1 4
< Higher Byte of A*B)
Divide A by B
DIV AB (A € Quotient and B € - 1 4
Remainder) el eorande @
DEC A A€A-1 Register 1 1
Rn Rn € Rn-1 Register 1 1
Direct (Direct) € (Direct) — 1 Direct 2 1
@Ri @Ri € @Ri-1 Indirect 1 1
INC A A€A+1 Register 1 1
Rn Rn € Rn+1 Register 1 1
Direct (Direct) € (Direct) + 1 Direct 2 1
@Ri @Ri € @Ri + 1 Indirect 1 1
DPTR DPTR € DPTR + 1 Register 1 2
DA A Decimal Adjust Accumulator -- 1 1
Table 4.5

Logical Instructions

14

The next group of instructions are the Logical Instructions, which perform logical operations like
AND, OR, XOR, NOT, Rotate, Clear and Swap. Logical Instruction are performed on Bytes of
data on a bit-by-bit basis.

Mnemonics associated with Logical Instructions are as follows:

[] ANL

« ORL

[] XRL

« CLR

[] CPL

o RL

[] RLC

o RR

[] RRC

« SWAP

The following table shows all the possible Mnemonics of the Logical Instructions.

A(— Imm

ata 2
A € A AND Rn Register 1 1
A €& A AND (Direct) Direct 2 1
A € A AND @Ri Indirect 1 1
(Direct) € (Direct) AND A Direct 2 1
Direct. #Data (Direct) € (Direct) AND #Data Direct 3 2
ORL A. #Data A € A OR Data Immediate 2 1
A.Rn A € AORRn Register 1 1
A. Direct A € A OR (Direct) Direct 2 1
A. @Ri A € A OR @Ri Indirect 1 1
Direct. A (Direct) € (Direct) OR A Direct 2 1
Direct. #Data (Direct) € (Direct) OR #Data Direct 3 2
XRL A, #Data A € A XRL Data Immediate 2 1
A.Rn A € A XRL Rn Register 1 1
A. Direct A € A XRL (Direct) Direct 2 1
A. @RI A € AXRL @Ri Indirect 1 1
Direct. A (Direct) € (Direct) XRL A Direct 2 1
Direct, #Data (Direct) € (Direct) XRL #Data Direct 3 2
CLR A A< 00H - 1 1
CPL A A€ A -- 1 1
RL A Rotate ACC Left = B et | el
RLC A Rotate ACC Left through Carry - 1 1
RR A Rotate ACC Right = 1 1
RRC A Rotate ACC Right through Carry - 1 1
SWAP A Swap Nibbles within ACC -— 1 1

Table 4.6

Boolean or Bit Manipulation Instructions

15

As the name suggests, Boolean or Bit Manipulation Instructions will deal with bit variables. We
know that there is a special bit-addressable area in the RAM and some of the Special Function
Registers (SFRs) are also bit addressable.

The Mnemonics corresponding to the Boolean or Bit Manipulation instructions are:

« CLR

« SETB
[] MOV
« JC

[] \]NC
« JB

[] \]NB
« JBC

[] ANL
« ORL
[] CPL

These instructions can perform set, clear, and, or, complement etc. at bit level. All the possible
e Boolean Instructions are specified in the following table.

mnemoics of th

Mne

Ins

NERY A

Program Branching Instructions

16

onic Instruction Jescl B

CLR 8! C € 0 (C = Carry Bit)
Bit Bit € 0 (Bit = Direct Bit) 1
SET C (ehS 1l 1 1
Bit Bit € 1 2 1
CPL C cecC 1 1
Bit Bit & Bit 2 1
ANL C. /Bit C € C. Bit (AND) 2 1
C, Bit C € C.Bit (AND) 2 1
ORL C. /Bit C € C+ Bit (OR) 2 1
C, Bit C € C +Bit (OR) 2 1
MOV C, Bit C € Bit 2 1
Bit. C Bit € C 2 2
IC rel Jump is Carry (C) 1s Set 2 2
INC rel Jump is Carry (C) 1s Not Set 2 2
B Bit, rel Jump is Direct Bit is Set 3 2
INB Bit, rel Jump is Direct Bit is Not Set 3 2
IBC Bit. rel Jump 1s Direct B1‘t is Set and 3 D

Clear Bit
Table 4.7

The last group of instructions in the 8051 Microcontroller Instruction Set are the Program
Branching Instructions. These instructions control the flow of program logic. The mnemonics of
the Program Branching Instructions are as follows.
. LIMP
AIJMP
SIMP
Jz
INZ
CINE
DJINZ
NOP
LCALL
ACALL
RET
RETI
JMP

All these instructions, except the NOP (No Operation) affect the Program Counter (PC) in one
way or other. Some of these instructions has decision making capability before transferring
control to other part of the program.

The following table shows all the mnemonics with respect to the program branching
instructions.

17

LECTURE 4: ADDRESSING MODES OF 8051

1.8051 ADDRESSING MODES

What is an Addressing Mode?
An Addressing Mode is a way to locate a target Data, which is also called as Operand. The 8051
Family of Microcontrollers allows five types of Addressing Modes for addressing the Operands.
They are:

o Immediate Addressing

o Register Addressing

o Direct Addressing

« Register — Indirect Addressing

e Indexed Addressing

Immediate Addressing
In Immediate Addressing mode, the operand, which follows the Opcode, is a constant data of
either 8 or 16 bits. The name Immediate Addressing came from the fact that the constant data to
be stored in the memory immediately follows the Opcode.
The constant value to be stored is specified in the instruction itself rather than taking from a
register. The destination register to which the constant data must be copied should be the same
size as the operand mentioned in the instruction.
Example: MOV A, #030H
Here, the Accumulator is loaded with 30 (hexadecimal). The # in the operand indicates that it is a
data and not the address of a Register.
Immediate Addressing is very fast as the data to be loaded is given in the instruction itself.

Register Addressing
In the 8051 Microcontroller Memory Organization Tutorial, we have seen the organization of
RAM and four banks of Working Registers with eight Registers in each bank.
In Register Addressing mode, one of the eight registers (RO — R7) is specified as Operand in the
Instruction.
It is important to select the appropriate Bank with the help of PSW Register. Let us see a
example of Register Addressing assuming that Banko is selected.
Example: MOV A, R5
Here, the 8-bit content of the Register R5 of BankO is moved to the Accumulator.

Direct Addressing
In Direct Addressing Mode, the address of the data is specified as the Operand in the instruction.
Using Direct Addressing Mode, we can access any register or on-chip variable. This includes
general purpose RAM, SFRs, 1/0 Ports, Control registers.
Example: MOV A, 47H
Here, the data in the RAM location 47H is moved to the Accumulator.

Register Indirect Addressing
In the Indirect Addressing Mode or Register Indirect Addressing Mode, the address of the
Operand is specified as the content of a Register. This will be clearer with an example.
Example: MOV A, @R1

18

The @ symbol indicates that the addressing mode is indirect. If the contents of R1 is 56H, for
example, then the operand is in the internal RAM location 56H. If the contents of the RAM
location 56H is 24H, then 24H is moved into accumulator.
Only RO and R1 are allowed in Indirect Addressing Mode. These register in the indirect
addressing mode are called as Pointer registers.

Indexed Addressing Mode
With Indexed Addressing Mode, the effective address of the Operand is the sum of a base
register and an offset register. The Base Register can be either Data Pointer (DPTR) or Program
Counter (PC) while the Offset register is the Accumulator (A).
In Indexed Addressing Mode, only MOVC and JMP instructions can be used. Indexed
Addressing Mode is useful when retrieving data from look-up tables.
Example: MOVC A, @A+DPTR
Here, the address for the operand is the sum of contents of DPTR and Accumulator.

Types of Instructions in 8051 Microcontroller Instruction Set

Before seeing the types of instructions, let us see the structure of the 8051 Microcontroller
Instruction. An 8051 Instruction consists of an Opcode (short of Operation — Code) followed by
Operand(s) of size Zero Byte, One Byte or Two Bytes.
The Op-Code part of the instruction contains the Mnemonic, which specifies the type of
operation to be performed. All Mnemonics or the Opcode part of the instruction are of One Byte
size.
Coming to the Operand part of the instruction, it defines the data being processed by the
instructions. The operand can be any of the following:

« No Operand

o Datavalue

« 1/OPort

e« Memory Location

o CPU register
There can multiple operands and the format of instruction is as follows:

19

L]

JIS GNIT

JIS GROUP
Educational Initiatives

* Module 7: Support IC chips
* Topic:

Introduction to Programmable Peripheral Interface
device -8255

* Programmable Peripheral Interface
* Architecture of Intel 8255A

e Session objective: To discuss about peripheral device
Session outcome: Students will know about PPl 8255

Programmable Peripheral Interface arir
gis SRoue (PP

A Programmable Peripheral Interface is a multiport device.
The ports may be programmed in a verity of ways as required
by the programmer. The device is very useful for interfacing

peripheral devices the term PIA, peripheral Interface Adapter
is also used by some manufacturer.

* INTEL 8255

* The Intel 8255 is a Programmable Peripheral Interface (PPI). It
has two versions, namely Intel 8255A and Intel 8255A-5.

The 8255A is a widely used, programmable, parallel 1/0 device. It can be programmed to
transfer data under various conditions, from simple I/O to interrupt I/0. It is flexible, ver-
satile, and economical (when multiple /O ports are required), but somewhat complex. It 1§
an important general-purpose 1/0 device that can be used with almost any microprocessor,

JIS GINIT

JIS GROUP
Educational Initiatives

The 8255A has 24 1/O pins that can be grouped primarily in two 8-bit parallel ports:
A and B, with the remaining eight bits as port C. The eight bits of port C can be used as
individual bits or be grouped in two 4-bit ports: Cypprr (Cy) and Crower (Cp), as in
Figure 1(a). The functions of these ports are defined by writing a control word in the
control register.

The block diagram in Figure shows two 8-bit ports (A and B), two 4-bit ports (Cy,
and CL) thﬂ data bus buffer, and control logic.

Pin Configuration ']
PA; 1 Rl = PA.
PA,[] 2 39 [pPA; >
PA,] 3 38 [Pa,
PA, 1 4 37 :PA-,
RD[] 5 36 1 WR
Port A csds 35 [J RESET
GND [} 7 34 1D,
A, 18 33 D D,
Ao 32 1D, 1'
ICU PC; [J10 8255A 31 [D, =
5255ﬁ —— Pont C PC, 11 30 (1D,
CpL PCs 12 29 | D,
PC.[J13 28 [Db,
PCo (] 14 27 [b,
PC, 15 26 [v
Port B pC, J16 25 [PB,
PCs; 117 24 [pPB,
PB, 118 23 [PB;
PB, 119 22] PB.
PB, 20 21 [PB;

(a)

Architecture of Intel 8255A &It

Intel 8255A is a 40 pin I. C. Package. It operates on a single 5 Vdc supply. Its
important characteristics are as follows:

embient temperature 0 to 70°C. v
oltage on any pin: 0.5V to7V. oL = Outputlow voltage = 0.45 V.

I\’Jower dissipation 1 Watt. ' Vou = Output high voltage = 2.4 V.
IL, = InPUt low voltage = Minimum 0.5 V, Maxi- IDR = Darlington drive current = Minimum

mum 0.8V, .
Vin = Input high voltage = Minimum 2 V, Maximum 1 mA, Maximum 4 mA of any 8 pins of the port,

VCC.

Dg-D7 C:IDF_— =D Pag-py
G
RS INTEL = Pep-pe;
8
C— Peo-pyy
R Schematic Diagram of
——aono Intel 8255 A.

L

i\z)'»»
ol Ol - o

PA; (] 1 40 9 pa . a -
S A Pin Names GiT
PA, 3 % [P, D,-D, Data Bus (Bidirectional)
PA, (14 37 1 pA, _iESET Reset Input
RD C15 3% [WR CS Chip Select
cs 6 35 [IRESET RD jkead Input
GND 7 34 Ao, WR Write Input
A8 3 [, Ag, A, Port Address
Plc\oE 9 2 Ao, PA~PA, | Port A (Bit)
1" 8255A Y H® 1 Port B By
PC, O] 11 30 7Dy
PCs 112 29 [D,
PC, 13 28 1D,
PCo] 14 21 AD,
PC; 15 26 3 Ve
PC, 116 25 [1pB, The pins for various ports are as follows :
PC; Oy 24 [PB, PAyg—PA; 8pinsofportA
PBy 118 23 [PB; PBy;—-PB; 8 pinsof portB
PB, 19 22 [1PB, PCy - PC; 4 pins of port Cjyyer.
PB, OJ 20 21 [B, PC4 - PC, 4 pms of port Cupper‘

Pin Diagram of 8255 PPI

Electronics Desk

J($ M e

JIS GROUP

Educational Initiatives

Group

A
Port I'O
A PA-PA,

(8) |=

T (e R =
Supplies GND rzup <‘:

Control

Group

Port C > IO
Upper PC,—PC,

(4) je—

Architect
ure Of Bidirectional Data Bus

8255 PPl i

Group

SIS {} <>?

Internal e
D /
Bi‘:l Port C K: /O
Lower PC,;-PC,
(4) -
X
RD —<a
WiA.R Read Group Group
| = : =53 B o
Write 2
Ao =1 Control Control Port > i
. B ~PB,
RESET —~ Loglc (8)
L~ 1 p———

1

. : , GINiT
#2522 The important control signals are as follows:

CS (Chip Select). Itisa chip select signal. The LOW status of this signal enables communica-
tion between the CPU and 8255. |

RD (Read). When RD goes LOW the 8255 sends out data or status information to the CPU on
the data bus. In other words it allows the CPU to read data from the input port of 8255.

WR (Write). When WR goes LOW the CPU writes data or control word into 8255. The CPU
writes data into the output port of 8255 and the control word into the control word register.

Agand Ay. The selection of input port and control word register is done using Ag and A in
* conjunction with RD and WR. Ao and A; are normally connected to the least significant bits of the
address bus. If two 8255 units are used the address of ports are as follows:

For the 1st unit of 8255, i.e. 8255.1:

Port/Control word Port/Control word
register B register Address
Port A : 0
Port B 01
Port C 02

Control word register | 03

J‘S GNIT

JIS GROUP

Educational Initiatives

. Hex
L e L3 Address Port
| A = 80H

Ay —P>— <
As —dD>— " A As Ag As Ay Ay Ay | Ay Ay
Ay —PD— : ' ‘C=82H P 00 00 G610 0O = 80H A
Aji—tD— Ao —1 40 0 1 | =8ln B

TOR —| RD B = 81H 1 0 | =82H 8!
A; _‘b_ e o

IOW WR peset 11 = 834 | Control

Register

(a) (b)

FIGURE
8255A Chip Select Logic (a) and I/O Port Addresses (b)

J($

JIS GROUP

Educational Initiatives

VIS Modes of Operation of 8255 PPl <™'T

dIE GROUP
onal Initiatives

e 8255 has two modes of operation. These are as follows:

* Bit Set-Reset mode: When port Cis utilized for control or
status operation, then by sending an OUT instruction, each
individual bit of port C can be set or reset.

* 1/0 mode: As we know that the I/ O mode is sub-classified
into 3 modes. So, let us now discuss the 3 modes here.

* Mode 0: Input/Output mode

* This mode is the simple input output mode of 8255 which
allows the programming of each port as either input or
output port.

* The input/output feature of mode 0 includes:
* |t does not support handshaking or interrupt capability.
 The input ports are buffered while outputs are latched.

GIiT
s Mode 1: Input/output with handshaking

Mode 1 of 8255 supports handshaking with the ports programmed as
either input or output mode. We know that it is not necessary that all the
time the data is transferred between two devices operating at same
speed. So, handshaking signals are used to synchronize the data transfer
between two devices that operates at different speeds.

* The figure below shows the data transferring between CPU and an output
device having different operating speeds:

Here STB signal is used to inform the output Data Bus

device that data is available on the data bus by -

the processor. 'STB 0 ¢
Here port A and port B can be separately Processor r———— “tPu
configured as either input or output port. ¢ ACK device
Both the port utilizes 3-3 lines of port C for BUSY
handshaking signals. The rest two lines \

operates as input/output port.

It supports interrupt logic. Data Transfer using

The data at the input or output ports are handshaking signals

latched.

L]

JIS GROUP
Educational Initiatives

* Mode 2: Bidirectional I/0 port with handshaking

* In this mode, the ports can be utilized for the bidirectional
flow of information by handshaking signals. The pins of group
A can be programmed to acts as bidirectional data bus and
the port C upper (PC, — PC,) are used by the handshaking
signal. The rest 4 lower port C bits are utilized for 1/0O
operations.

* As the data bus exhibits bidirectional nature thus when the
peripheral device request for a data input only then the
processor load the data in the data bus. Port B can be
programmed in mode 0 and 1. And in mode 1 the lower bits
of port C of group B are used for handshaking signals.

JIS GNIT
Control Word

JIS GROUP

Educational Initiatives

D7 D6 DS D4 D3 DZ Dl DO

0/1
BSR Mode /0 Mode
(Bit Set/Reset) l l l
For Port C Mode O Model Mode 2
No effect on Simple IO Handshake /O Bidirectional
[/O Mode for ports for ports A data bus for
A, B, and C and/or B port A
Port C bits Port B: either
are used for in Mode O or |
handshake
Port C bits are
used for
(b) handshake

JIS GROUP
E atives

ucational Initiati

Control Word

Lo

D,

D5

D,

Group B
Port C (Lower—PC;—PC,)
I = Input
0 = Output
Port B
I = Input
0 = Output
Mode Selection
0 = Mode O
1 = Mode |
Group A
Port C (Upper—PC,—PC,)
— I = Input
0 = Output
Port A
I = Input
0 = Output
Mode Selection
00 = Mode O
01 = Mode |
IX = Mode 2
I = IO Mode
0 = BSR Mode

et i

Example 1. Make con‘trol word when the ports of Intel 8255 are defined as follows:
Port A as an input port

Mode of the Port A—Mode 0
Port Bas an output port.
Mode of the Port B—Mode 0.

Port C as an input port s & 5 ‘& 78 & 10 0 e
uppcr‘ p p BIT NO.

Port C,,,¢r s an output port. o | o |0 |[=—
lower tputp vlofojr? CONTROL WORD

BITS

D (
™

The control word =98 H

Bit No. 01is set to 0, as the Port Coyer is an output port.

Bit No. 1 is set to 0, as the port B is an output port.

Bit No. 2 is set to 0, as the Port B has to operate in Mode 0.
Bit No. 3is set to 1, as the Port Cypper is an input port.

Bit No. 4 is set to 1, as the Port A is an input port.

Bit No. 5 and 6 are set to 00 as the Port A has to operate in Mode 0.

Bit No. 7 is set to 1, as the Ports A, B and C are used as simple input/output port.
Thns the control word = 98 H.

IS aseus GINiT
Educational Initiatives

Example . Make control word for the fol-

lowing arrangement of the ports of Intel 8255 for
mode 0 operation :

Port A—output
Port B—output

Port C,,,per—output

Port C,..—output

: o | o | o |~— conTrOL WORD
o fo0o]0 BITS

> <
O ¢

J($

JIS GROUP

Educational Initiatives

INTEL 8255 operation

Educational Initiatives

Control Word
D, D¢ Ds D, D, D, D, D

GNIiT

’

Mode 2

Port B: either
in Mode O or |

0/1
BSR Mode IO Mode
(Bit Setv/Reset) l l
For Port C Mode O Mode
No effect on Simple 10 Handshake /O Bidirectional
[/O Mode for ports for ports A data bus for
A, B, and C and/or B port A
Port C bits
are used for
handshake

(b)

Port C bits are
used for
handshake

JIS GROUP
E atives

ucational Initiati

Control Word

Lo

D,

D5

D,

Group B
Port C (Lower—PC;—PC,)
I = Input
0 = Output
Port B
I = Input
0 = Output
Mode Selection
0 = Mode O
1 = Mode |
Group A
Port C (Upper—PC,—PC,)
— I = Input
0 = Output
Port A
I = Input
0 = Output
Mode Selection
00 = Mode O
01 = Mode |
IX = Mode 2
I = IO Mode
0 = BSR Mode

EEEEEEEE GI] i I
ducational Initiati

Wiite a program to read the DIP switches and display the reading from port B at port
A and from port C; at port Cy.

r

+5V
I 8255A
A 4>—1 CS
A| Al
Ao Ao DIP
MEMR RD » S\\{itchcs
MEMW WR *

GNIT

JIS GROUP

EEEEEE ional Initiatives

I. Port Addresses This is a memory-mapped I/0; when the address line A5 is high,
the Chip Select line is enabled. Assuming all don’t care lines are at logic 0, the port ad-
dresses are as follows:

Port A = 8000H (Al = O, A() = 0)
Port B = 800IH (A, =0,A,=1)
Port C = 8002H (A, =1,A,=0)

Control Register = 8003H (A, =1,Ay=1)

2. Control Word

D7 D(, D5 D4 D3 D D()
I 0 0 0 0 0 I =83H

D,
I
* | | L
I/0O Function * l L Port C, = Input

Port A in Mode 0 Port A Port B = Input
= Output =Port B in Mode 0

Port Cy; = Output

(V]

3. Program

MVI A,83H :Load accumulator with the control word

STA 8003H ‘Write word in the control register to initialize the ports
LDA 8001H :Read switches at port B

STA 8000H :Display the reading at port A

LDA 8002H :Read switches at port C

ANI OFH ‘Mask the upper four bits of port C; these bits are not input d
RLC ‘Rotate and place data in the upper half of the accumulator
RLC

RLC

RLC

STA 8002H ;Display data at port Cy,
HLT

BSR (Bit Set/ Reset) mode GiT

aaaaaaaaaaaaaaaaaa

The BSR mode is concerned only with the eight bits of port C, which can be set or reset
by writing an appropriate control word in the control register, A control word with bit D,
=0 is recognized as a BSR control word, and it does not alter any previously transmitted
control word with bit D, = 1; thus the I/O operations of ports A and B are not affected by
a BSR control word. In the BSR mode, individual bits of port C can be used for applica-

tions such as an on/off switch.

BSR CONTROL WORD
This control word, when written in the control register, sets or resets one bit at a time,

g

D D, D Dy By By Winl 1D
O x > > Bit Select S/RJ
* L 1 Set = 1
BSR Mode # Reset = 0O
Not Used,
Generally Set = 0O
OO0 = Bit O
001 = Bit 1
010 = Bit 2
O11 = Biait 3
100 = Bit 4
IO = Bit-S
110 = Bit 6

It Bit 7

JJJJJJJJ

GINIT

Write a BSR control word subroutine to set bits PC; and PC; and reset them after 10 ms.

Use the schematic in Figure

and assume that a delay subroutine is available.

Ay ———— 8255 s Hex Dk
A6 I | C—S A = 80H Address
As —oPD>— Ay Ag As Ay Ay Ay | Ay Ay
A S bl C = 82H 1 0000O0|O 0 | =80u A
Ay —ao> Ay = A_o 0 | | = 8lH B
A,—o>— OR—qRD B = 8l 1 0 | = 82u C
IOW WR Reset [= 83H Control
l Register
(a) (b)
BSR CONTROL WORDS
b By Dy Dy Dy Dy Dy D
To set bit PC, = 0 0O O 0 1 | | 1 OFH
To reset bit PC; = 0 0 0 0 | 1 1 0 = O0EH
To set bit PC; = O 0 9) 90 1 1] = Q7H
Toresetbit PC; = 0 0 0 0 0 | | 0O = 06H

PORT ADDRESS
Control register address = 83H; refer to Figure

EEEEEEEE
Educatior

SUBROUTINE GNIT
BSR: MVI A, 0FH ;Load byte in accumulator to set PC;
OUT 83H Set PC; =1
MVI A, 07H ;Load byte in accumulator to set PCj
OUT 83H Set PC; = 1
CALL DELAY ;This is a 10-ms delay
MVI A,06H :LLoad accumulator with the byte to reset PC;
OUT 83H :Reset PC,
MVI A, 0EH :Load accumulator with the byte to reset PC,
OUT 83H :Rest PC5
RET

From an analysis of the above routine, the following points can be noted:

1. To set/reset bits in port C, a control word is written in the control register and not in
port C.

2. A BSR control word affects only one bit in port C.

3, The BSR control word does not affect the I/0 mode.

THANK YOU!

Dr. Debasree Saha
Email : debasree.saha@qnit.ac.in
Ph: 7005338712

	EE 601_front page.pdf
	EE 601 _ocw
	8085.pdf
	mpmc lec1_intro.pdf
	Slide 1
	Slide 2
	Slide 3: Course Content
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Introduction to Microcomputer based system
	Slide 9
	Slide 10
	Slide 11: Introduction to Microcomputer based system
	Slide 12: Quiz time
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17: INTEL 4004
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Advantages and disadvantages of Microprocessor and Microcontrollers
	Slide 36
	Slide 37

	mpmc lec3
	Slide 1
	Slide 2
	Slide 3: Pin Diagram of 8085
	Slide 4: Functions of various Pins of 8085
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Instruction Fetch operation
	Slide 11: A Microcomputer system
	Slide 12
	Slide 13

	mpmc lec5N_int arc
	Slide 1
	Slide 2
	Slide 3: Internal architecture of 8085 microprocessor
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: 8085 bus structure
	Slide 9
	Slide 10
	Slide 11
	Slide 12

	mpmc lec 8
	Slide 1
	Slide 2
	Slide 3: ADDRESSING MODES OF 8085
	Slide 4
	Slide 5
	Slide 6: Opcode and Operand
	Slide 7: One byte instruction
	Slide 8: Two byte instruction
	Slide 9: Three byte instruction
	Slide 10
	Slide 11: Instruction Fetch operation
	Slide 12: A Microcomputer system
	Slide 13
	Slide 14

	mpmc lec 8N_instruction set
	Slide 1
	Slide 2
	Slide 3: INSTRUCTION SET OF INTEL 8085
	Slide 4: Data Transfer Group
	Slide 5: Arithmetic Group
	Slide 6: I/O and Machine Control Group
	Slide 7: Data Transfer Group
	Slide 8: 2. Arithmetic Group
	Slide 9
	Slide 10: DAA (Decimal adjust accumulator)
	Slide 11

	mpmc lec 9N_instruc_ii
	Slide 1
	Slide 2
	Slide 3: INSTRUCTION SET OF INTEL 8085
	Slide 4: Logical Group
	Slide 5
	Slide 6
	Slide 7: 4. Branch Group
	Slide 8
	Slide 9: 5. Stack, I/O and Machine Control Group
	Slide 10

	mpmc lec 11
	Slide 1
	Slide 2
	Slide 3: Instruction cycle
	Slide 4: Fetch Operation
	Slide 5: Execute Operation
	Slide 6: Machine Cycle
	Slide 7
	Slide 8
	Slide 9: 1.Opcode fetch machine cycle of 8085 :
	Slide 10: 2. Memory Read Machine Cycle of 8085:
	Slide 11: 3. Memory Write Machine Cycle of 8085
	Slide 12: 4. I/O Read Cycle of 8085
	Slide 13: Timing diagram for STA 526AH
	Slide 14: STA means Store Accumulator -The contents of the accumulator is stored in the specified address (526A). The opcode of the STA instruction is said to be 32H. It is fetched from the memory 41FFH (see fig). - OF machine cycle Then the lower order
	Slide 15: 3. Timing diagram for INR M
	Slide 16: Instruction Fetch operation
	Slide 17

	mpmc lec 12N_8085_interrupt
	Slide 1
	Slide 2
	Slide 3: 8085 interrupt structure and operation
	Slide 4: Hardware interrupts in 8085
	Slide 5: Interrupt structure of 8085
	Slide 6: TRAP
	Slide 7
	Slide 8: INTR
	Slide 9: Summary of hardware interrupts
	Slide 10: Software interrupts in 8085
	Slide 11: Masking and unmasking of Interrupts
	Slide 12
	Slide 13: Accumulator content for SIM
	Slide 14
	Slide 15
	Slide 16

	mpmc lec16n_8255-1
	Slide 1
	Slide 2
	Slide 3: Programmable Peripheral Interface (PPI)
	Slide 4: Intel 8255A
	Slide 5: Architecture of Intel 8255A
	Slide 6
	Slide 7: Architecture of 8255 PPI
	Slide 8
	Slide 9
	Slide 10

	mpmc lec 8255_2
	Slide 1
	Slide 2
	Slide 3: Modes of Operation of 8255 PPI
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	mpmc lec_8255-3
	Slide 1
	Slide 2
	Slide 3: INTEL 8255 operation
	Slide 4
	Slide 5:
	Slide 6
	Slide 7
	Slide 8: BSR (Bit Set/ Reset) mode
	Slide 9
	Slide 10
	Slide 11

	OCW _ - 8086
	OCW _ 8051
	mpmc lec16n_8255-1
	Slide 1
	Slide 2
	Slide 3: Programmable Peripheral Interface (PPI)
	Slide 4: Intel 8255A
	Slide 5: Architecture of Intel 8255A
	Slide 6
	Slide 7: Architecture of 8255 PPI
	Slide 8
	Slide 9
	Slide 10

	mpmc lec 8255_2
	Slide 1
	Slide 2
	Slide 3: Modes of Operation of 8255 PPI
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

	mpmc lec_8255-3
	Slide 1
	Slide 2
	Slide 3: INTEL 8255 operation
	Slide 4
	Slide 5:
	Slide 6
	Slide 7
	Slide 8: BSR (Bit Set/ Reset) mode
	Slide 9
	Slide 10
	Slide 11

