GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

ELECTROMAGNETIC FIELDS EE(PH)301

TIME ALLOTTED: 3Hours

d) L-1T-1

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: 10×1=10 Marks 1. i) Electric field containing in charge free regions can be found using CO₂ a) Laplace's equation b) Poisson's equation c) Coulombs law d) Helmholtz equation ii) If there is a total charge of 20 pC over a surface area of 0.1 m², the surface CO3 charge density will be a) $200 \frac{pC}{m^2}$ b) $200 \frac{C}{m^2}$ c) $100 \frac{pc}{pc}$ d) $100 \frac{c}{m^2}$ Electronic Polarizability of a monatomic gas atom is proportional to CO3 a) R b) R2 c) R3 d) R4 R is the atomic radius. iv) Magnetostatic field is COL a) Conservative b) Solenoidal c) Irrotational d) Both a) and c) v) The dimension of $(\mu_0 \varepsilon_0)$ is CO3 a) L-2T-2 b) L-2T2 c) LT-1

B.TECH/EE/ODD/SEM-III/EE(PH)301/R21/2022

vi)	Which of the following materials exhibit Ferro-magnetic property? a) Iron b) Platinum c) Hydrogen d) Rochelle salt	1	CO4
vii)	According to Faraday's law, EMF stands for a) Electromagnetic field b) Electromagnetic force c) Electromagnetic friction d) Electromotive force	1	CO2
viii)	In free space, the Poisson equation becomes a) Maxwell equation b) Ampere equation c) Laplace equation d) Steady state equation	1	CO3
ix)	How is the residual magnetism from a material removed? a) Retentivity b) Coercivity c) Magneton d) Switching off magnetic field	1	CO3
x)	When does a paramagnetic material become diamagnetic material? a) At critical temperature b) Above critical temperature c) Below critical temperature d) Never	1	COI
xi)	If \vec{E} and \vec{B} are the electric and magnetic fields respectively of an e.m. wave travelling in vacuum with propagation vector \vec{K} , then nature of e.m. wave is represented by a) $\vec{K} \cdot \vec{E} = 0$ b) $\vec{K} \cdot \vec{B} = 0$ c) both a) and b) d) $\vec{K} \times \vec{E} = -\vec{B}$	1	CO1, CO4
xii)	Calculate the emf when the flux is given by $3\sin t + 5\cos t$ a) $3\cos t - 5\sin t$ b) $-3\cos t + 5\sin t$ c) $-3\sin t - 5\cos t$ d) $3\cos t + 5\sin t$	1	CO1

B.TECH/EE/ODD/SEM-III/EE(PH)301/R21/2022

GROUP – B (Short Answer Type Questions)

(Answer any <i>three</i> of the following) $3 \times 5 = 15$
--

	(Answer any three of the following) $3 \times 5 = 15$		
		Marks	CO No
2. a.	Show that $\oint \overrightarrow{B} \cdot \overrightarrow{dS} = 0$, where \overrightarrow{B} is a magnetic field. State the theorem used here.	3	CO2
b.	What is the difference between electric potential and potential difference?	2	COI
3. a.	Obtain Faraday's laws of e.m. induction in differential form.	2	COL
b.	Express Ampere's circuital law in terms of magnetic vector potential.	3 .	COI
4. a.	What is Bohr Magneton? Give the expression and value of it.	3	CO3
b.	Why technologically all important materials are either Ferromagnetic or Ferrimagnetic?	2	CO3
5.	What is Polarization in dielectric materials? Find out a relation between D, E and P.	5	COI
6.	Derive the Curie-Weiss law of ferromagnetism and obtain an expression for the Curie temperature.	5	CO1
	GROUP - C		
	(Long Answer Type Questions)		
	(Answer any three of the following) $3 \times 15 = 45$	Market	CON
7. a.	Derive and state Poynting theorem.	Marks 7	CO No
b.	Explain the transformer emf and motional emf with example.	5	CO2
c.	Establish a relation among magnetic flux density B, magnetic intensity H and		CO2
	intensity of magnetization M.	3	
8. a.	An electron revolves round a nucleus with frequency 4 x 10 ¹⁵ Hz in an orbit of		
	radius of 0.53 Å. Calculate	4	
	(a) the electric current due to moving electron. The magnetic moment of the orbital electron.		
b.	If the radius of hydrogen atom is 0.053 nm, find its electronic polarizability.	2	CO3
c.	Find out the relations corresponding to the unit vector between Cartesian and	4	CO2
	cylindrical coordinates.		000
d.	Write down the mathematical expression of Gauss divergence and Stokes theorem.	2	CO2
e.	Show that curl grad $f = 0$, where $f = x^2y + 2xy + z^2$.	2	
		3	
9. a.	What is meant by the term 'Loss Tangent/Loss Angle' of a dielectric? Explain physical significance of Loss Tangent considering equivalent phasor diagram.	7	CO3
b.	The polarizability of neon is 0.35 x 10-40 F- m^2 . If the gas contains 2.7 x 10^{25}	3	CO3
c.	atoms/ m^3 at 0°C and 1 atm. pressure, calculate its relative dielectric constant. Define electric flux density or electric displacement vector and atomic	5	CO3
· .	polarizability. Hence derive $D = \in_0 E + P$, where symbols have their usual		003
	meaning.		

B.TECH/EE/ODD/SEM-III/EE(PH)301/R21/2022

10. a.	What do you mean by Hysteresis effect? Draw & Explain Ferromagnetic Hysteresis curve identifying coercive force and remanent flux density.	5	CO3
b.	How do you compare the behavior of soft and hard magnetic materials using Hysteresis Curves.	3	CO3
c.	The magnetization for a metal alloy is 1.2×10^6 A/m when the magnetic field is 200 A/m. Calculate the magnetic susceptibility and magnetic induction or flux density within the alloy.	4	CO3
d.	Give some applications of Ferrites.	3	CO3
11. a.	Applying Maxwell's equation, derive the expression of electromagnetic wave equation in free space for electric field. Hence find out the velocity of the wave.	6	CO4
b.	How the wave equation will be modified for loss-less dielectric? Hence obtain the velocity of an e.m. wave propagating through such a medium with relative permittivity 3 and relative permeability 5.	4	CO1,CO4
c.	Explain Skin Effect in relation to e.m. wave propagation through source-free conducting medium and hence obtain an expression of Skin Depth.	5	CO1, CO4