

GURU NANAK INSTITUTE OF TECHNOLOGY An Autonomous Institute under MAKAUT

2022

ELECTROMAGNETIC THEORY AND TRANSMISSION LINE E1404

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

1(i)	A field can exists if it satisfies – a) Gauss's Law b) Faraday's Law c) Coulomb's Law d) All Maxwell's equation	Marks 1	CO No.
(ii)	Which one is true for charge free region? a) $\nabla^2 \phi = 1$ b) $\nabla^2 \phi = 0$ c) $\nabla^2 \phi = -\epsilon/\rho$ d) none of the these	1	CO2
(iii)	Given a vector, $\mathbf{A} = 3x\mathbf{a}_x + y\mathbf{a}_y + 5z\mathbf{a}_z$ find the curl of \mathbf{A} a) xz b) 0 c) $4z$ d) $x+z$	1	COI
(iv)	What is the unit of magnetic field intensity? a) ampere – meter square b) coulomb c) ampere – meter d) ampere	1	CO4
(v)	For static magnetic field a) $\nabla x \mathbf{B} = \rho$ b) $\nabla x \mathbf{B} = \mu \mathbf{J}$ c) $\nabla \cdot \mathbf{B} = \mu_0 \mathbf{J}$ d) $\nabla x \mathbf{B} = 0$	1	CO4
(vi)	For free space a) $E = -\nabla V$ b) $E = -\nabla V - A$ c) $E = -\nabla V - B$ d) $E = -\nabla V - D$	1	CO2

B.TECH/EIE/EVEN/SEM-IV/EI404/R18/202.

11 900		1	CO2
(vii)	Curl of gradient $\nabla x \nabla V$	1	CO2
	a) -1 b) 1		
	c) infinity		
	d) zero		
(viii)		1	CO2
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	a) Laplacian operation		
	b) Curl operation		
	c) Double gradient operation		
	d) Null vector		
Con	Couce's law in point form is	1	CO2
(ix)	Gauss's law in point form is a) $\nabla \cdot \mathbf{D} = \rho_{v}$		002
	b) $\nabla \cdot \mathbf{D} = \rho_s$		
	c) $\nabla \cdot \mathbf{D} = \rho_s$		
	d) $\nabla \mathbf{D} = \rho_V$		
(x)		1	CO5
(A)	a) σ=∞		
	b) $\sigma = 0$		
	(c) $J=0$		
	d) b & c		
(xi)	Which one is conservation of charge equation for thr steady currents?	1	CO ₃
	a) 1		
	b) $\nabla \cdot \mathbf{J} = 0$		
	c) $\nabla \cdot \mathbf{J} = 4\pi$		
	d) $\nabla \cdot \mathbf{J} = \rho$		001
(xii)		1	CO1
	a) $-3i + 11j + 7k$		
	b) $3i - 11j + 7k$		
	c) -3i - 11j - 7k		
	d) -3i + 11j - 7k GROUP - B		
	(Short Answer Type Questions)		
	(Answer any three of the following)	3 x 5	= 15
		Marks	CO No.
2. a)	What do you mean by solenoidal field.	1	CO1
b)	What do you mean by irrotational field	1	CO1
c)	State & explain Stoke's theorem.	3	COI
3.	By Applying Biot-Savart's law find out magnetic intensity	5	CO4
	vector H for an infinite long wire		
4.	Why electrostatic field is a conservative field? Explain	5	CO2
5.	Two point charges of equal mass m, and charge Q are suspended at a	5	CO2
	common point by two threads of negligible mass and length l. Show that		
	at equilibrium the inclination angle α of each thread to the vertical is given		
	by		
	$Q^2 = 16\pi\epsilon_0 mgl^2 \sin 2\alpha \tan \alpha$		
	If α is very small show that:		
	$\alpha = [Q^2/16\pi\epsilon_0 \text{mgl}^2]^{1/3}$		

6. What necessary modification had been done by Maxwell for time varying 5 CO4 EM field? Explain your answer starting from Ampere's Circuital law.

GROUP - C

(Long Answer Type	Questions)
-------------------	-----------	---

	(Answer any <i>three</i> of the following)		$3 \times 15 = 45$	
		Marks	CO No.	
7. a)	What is Transmission line?	2	CO6	
b)	Draw and explain the equivalent circuit of a transmission line.	5		
c)	Determine wave equation for lossy dielectric medium.	8	CO6	
8.a)	Given point P (-2, 6, 3) and vector $\mathbf{A} = y \mathbf{a}_x + (x + z) \mathbf{a}_y$, express P and A	5	CO1	
	in cylindrical and spherical coordinates. Evaluate A and Pin the			
	Cartesian, cylindrical, and spherical systems.			
8.b)	Write down the definitions of : a) irrotational field, b) solenoidal field, c) conservative field	3	CO1	
8.c)	For a vector field A, show explicitly that $\nabla \cdot \nabla \times A = 0$.	3	CO1	
8.d)	Given that $\mathbf{F} = \mathbf{x}^2 \mathbf{a}_x - \mathbf{x} \mathbf{z} \mathbf{a}_y - \mathbf{y}^2 \mathbf{a}_z$, calculate the circulation of F around the closed path shown in Figure	4	COI	

9.a)	State and prove Divergence theorem.	5	CO ₂
9.b)	Write the physical signification of divergence and curl.	4	CO2
9.c)	Define coulomb's law.	2	CO3
9.d)	What is Laplacian operator? Write Poisson's equation	4	CO3
10.a)	State and explain Gauss's law in differential form and explain what you mean by div. D.	5	CO3
10.b)	Prove that $E = -\nabla V$.	3	CO ₂
10.c)	Two point Charges -4 μ C and 5 μ C are located at (2,-1,3) and (0,4,-2) respectively. Find the potential at (1,0,1), assuming zero potential at infinity.	4	CO2
10.d)	State and explain Faraday's Law and Lenz's law of Electromagnetic induction.	3	CO5
11.	Write a short notes from the given following (any three)	3x5 = 15	
a)	Maxwell's equation for static fields	5	CO3
b)	Magnetic Vector potential.	5	CO4
c)	Electric field due to a uniformly charged sphere.	5	CO ₂
d)	Energy density in Electrostatic field	5	CO ₂
e)	Poynting Theorem	5	CO ₅