GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

ELECTRONIC DEVICES

EC303

TIME ALLOTTED: 3Hours

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: 10×1=10

	Answer any ten from the following, choosing the correct alternative of each question		
1. i)	Depletion region of p-n junction diode consisting of a) free electrons b) free holes c) immobile acceptors and donor ions d) photon	Marks	CO No CO2
ii)	When photodiode operates as a detector diode, operating region of V-I characteristics is	1	CO6
	a) 1 st quadrant b) 2 nd quadrant c) 3 rd quadrant d) 4 th quadrant		
iii)	For n-type degenerate semiconductor position of Fermi level is a) Inside conduction band b) Inside valance band c) Middle of forbidden gap d) None	1	COI
iv)	The threshold voltage of N channel Enhancement type MOSFET is a) Positive b) Negative c) Zero d) Infinity	1	CO4
v)	Ideal OP-AMP has input and output impedances (R_{in} and R_{out}) as a) $R_{in} = 0$, $R_{out} = \infty$ b) $R_{in} = \infty$, $R_{out} = 0$ c) $R_{in} = 1\Omega$, $R_{out} = 0$ d) $R_{in} = 0$, $R_{out} = 1\Omega$	1	CO5

B.TECH/ECE/ODD/SEM-III/EC303/R21/2022

vi)	For Zener breakdown the condition is a) P-N junction is lightly doped b) P-N junction is heavily doped c) P-N junction is moderately doped d) P region is heavily doped but N region is lightly doped	1	CO2
vii)	Which one is true for BJT? a) collector region is heavily doped b) emitter region is lightly doped c) base region has least doping d) base region is widest	1	CO3
viii)	At higher temperature in heavily doped semiconductor, the mobility is a) increased b) decreased c) saturated d) linearly increasing	1	COI
ix)	The amplification factor of JFET is a) $\mu = r_d \times g_m$ b) $r_d = \mu \times g_m$ c) $g_m = r_d \times \mu$ d) $\mu = 1 \times g_m$	1	CO4
x)	Oscillation occurs in an amplifier with the gain (A) and feedback factor (β) if a) $ A\beta > 1$, phase angle of $A\beta = 2\pi$ b) $ A\beta = 1$, phase angle of $A\beta = 2\pi$ c) $ A\beta < 1$, phase angle of $A\beta > 2\pi$ d) $ A\beta \ll 1$, phase angle of $A\beta \ll 2\pi$	1	CO5
xi)	MOSFET operates as an amplifier in a) Active region b) Saturation region c) Ohmic region d) Cut-off region	1	CO4
	GROUP – B		
	(Short Answer Type Questions) (Answer any <i>three</i> of the following) $3 \times 5 = 15$		
2	Wish Education and in disease of the desired in the Control of the	Marks	CO No
2.	With E-k diagram explain direct and indirect band-gap semiconductor. State Mass action law for a semiconductor.	5	CO1
3. a.	Describe the working principle of NPN transistor.	3	CO3
b.	The transistor has $I_E = 10$ mA and $\alpha = 0.98$. Find the value of base and collector currents	2	CO3

B.TECH/ECE/ODD/SEM-III/EC303/R21/2022

4.	Explain the working principle of Enhancement type N channel MOSFET.	5	CO3
5. a. b.	What are the drift and diffusion phenomena of a semiconductor? Draw the output waveform of the following circuit:	3 2	CO1 CO2
	R W		
	Vin D1 > V _{out}		
	V = SRL out		
	• • • • • • • • • • • • • • • • • • • •		
	The maximum value of $V_m = V_m$		
6.	Explain the operation of OP-AMP based differentiator circuit.	5	CO5
	GROUP – C (Long Answer Type Questions) (Answer any three of the following) $3 \times 15 = 45$		
		Marks	CO No
7. a.	Draw and explain the C-V characteristics of MOS capacitor under low frequency.	5	CO4
b.	Discuss different feedback topologies of negative feedback amplifier with block diagram.	5	CO5
	diagram. Prove that for BJT $I_C = \beta I_B + (1+\beta)I_{CO}$. The terms have their usual meaning. Draw the output characteristics of NPN transistor in common emitter configuration with proper labeling. Describe the drain and transfer characteristics of N-channel JFET.	5	CO5
c.	diagram. Prove that for BJT $I_C = \beta I_B + (1+\beta)I_{CO}$. The terms have their usual meaning. Draw the output characteristics of NPN transistor in common emitter configuration with proper labeling. Describe the drain and transfer characteristics of N-channel JFET. In an N-channel JFET: $I_{DSS} = 10 \text{mA}$, $V_{pinchoff} = 5 \text{V}$, calculate the I_{DS} for $V_{GS} = -2.5 \text{ V}$. Calculate CMRR of an OP-AMP in dB if differential voltage gain and common mode voltage gain are 10^6 and 0.001 respectively.	5	CO5
c. 8. a.	diagram. Prove that for BJT $I_C = \beta I_B + (1+\beta)I_{CO}$. The terms have their usual meaning. Draw the output characteristics of NPN transistor in common emitter configuration with proper labeling. Describe the drain and transfer characteristics of N-channel JFET. In an N-channel JFET: $I_{DSS} = 10 \text{mA}$, $V_{pinchoff} = 5 \text{V}$, calculate the I_{DS} for $V_{GS} = -2.5 \text{ V}$. Calculate CMRR of an OP-AMP in dB if differential voltage gain and common	5 5 9	CO3
c. 8. a. b.	diagram. Prove that for BJT $I_C = \beta I_B + (1+\beta)I_{CO}$. The terms have their usual meaning. Draw the output characteristics of NPN transistor in common emitter configuration with proper labeling. Describe the drain and transfer characteristics of N-channel JFET. In an N-channel JFET: $I_{DSS} = 10 \text{mA}$, $V_{pinchoff} = 5 \text{V}$, calculate the I_{DS} for $V_{GS} = -2.5 \text{ V}$. Calculate CMRR of an OP-AMP in dB if differential voltage gain and common mode voltage gain are 10^6 and 0.001 respectively. What is virtual ground? Discuss the operation of OP-AMP based Non-inverting	5 5 9	CO3
c. 8. a. b.	diagram. Prove that for BJT $I_C = \beta I_B + (1+\beta)I_{CO}$. The terms have their usual meaning. Draw the output characteristics of NPN transistor in common emitter configuration with proper labeling. Describe the drain and transfer characteristics of N-channel JFET. In an N-channel JFET: $I_{DSS} = 10 \text{mA}$, $V_{pinchoff} = 5 \text{V}$, calculate the I_{DS} for $V_{GS} = -2.5 \text{ V}$. Calculate CMRR of an OP-AMP in dB if differential voltage gain and common mode voltage gain are 10^6 and 0.001 respectively. What is virtual ground? Discuss the operation of OP-AMP based Non-inverting amplifier. Derive the expression of energy gap of an intrinsic semiconductor. Determine the position of Fermi Energy level if the effective mass of electron and hole are as	5 5 9 6	CO5 CO3 CO3

B.TECH/ECE/ODD/SEM-III/EC303/R21/2022

10 a.	Describe diode's behavior under forward and reverse biased condition with energy band diagram and draw its I-V characteristics with proper labeling.	7	CO2
b.	Write down the ideal characteristics of OP-AMP.	2	
c.	Explain the working principle of Bridge Rectifier. What is ripple factor? Write down the expression of ripple factor for bridge rectifier.	6	CO2
11.	Write Short note: (Any three)	3x5=15	
a.	FET parameters	5	CO3
b.	OP-AMP Adder Circuit	5	CO5
C.	Zener and Avalanche breakdown	5	CO2
d.	Clamper	5	CO2
e.	Ebers Mol model	5	CO3