# **GURU NANAK INSTITUTE OF TECHNOLOGY**

# An Autonomous Institute under MAKAUT

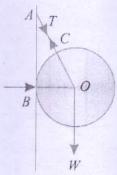
### 2022

# ENGINEERING MECHANICS EE(ME)301

TIME ALLOTTED: 3 Hours

**FULL MARKS: 70** 

The figures in the margin indicate full marks.

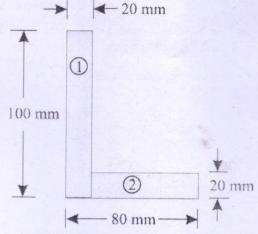

Candidates are required to give their answers in their own words as far as practicable

GROUP – A (Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question:  $10 \times 1 = 10$ 

| A      | nswer any ten from the following, choosing the correct alternative of each quest  | ion: $10 \times 1 = 1$ | 0     |
|--------|-----------------------------------------------------------------------------------|------------------------|-------|
|        |                                                                                   | Marks                  | CO No |
| 1. (i) | In order to determine the effects of a force acting on a body, we must know       | 1                      | COI   |
|        | a. Magnitude of the force                                                         |                        |       |
|        | b. Line of action of the force                                                    |                        |       |
|        | c. Nature of the force                                                            |                        |       |
|        | d. All of the above                                                               |                        |       |
| (ii)   | If the resultant of two forces P and Q acting at an angle $(\alpha)$ with P, then | 1                      | COI   |
|        | $a  tan\alpha = \frac{PSin\theta}{}$                                              |                        |       |
|        | a. $tan\alpha = \frac{PSin\theta}{P + QCos\theta}$                                |                        |       |
|        | b. $tan\alpha = \frac{PCos\theta}{P+QCos\theta}$                                  |                        |       |
|        | $QSin\theta$                                                                      |                        |       |
|        | c. $tan\alpha = \frac{QSin\theta}{P + QCos\theta}$                                |                        |       |
|        | d. $tan\alpha = \frac{Q \cos \theta}{P + Q \cos \theta}$                          |                        |       |
|        | $P+QCos\theta$                                                                    |                        |       |
| (iii)  | A couple consists of                                                              | 1                      | COI   |
|        | a. Two like parallel forces of same magnitude.                                    |                        |       |
|        | b. Two like parallel forces of different magnitudes.                              |                        |       |
|        | c. Two unlike parallel forces of same magnitude                                   |                        |       |
|        | d. Two unlike parallel forces of different magnitudes                             |                        |       |
| (iv)   | The centroid of semicircle lies at a distance ofform its base                     | 1                      | CO2   |
|        | a. $3r/4\pi$                                                                      |                        |       |
|        | b. 3π/4r                                                                          |                        |       |
|        | c. $4r/3\pi$                                                                      |                        |       |
|        | d. $4\pi/3r$                                                                      |                        |       |
| (v)    | Centre of gravity of a thin hollow cone lies on the axis at a height of:          | 1                      | CO2   |
|        | a. one-fourth of the total height above base                                      |                        |       |
|        | b. one-third of the total height above base                                       |                        |       |
|        | c. one-half of the total height above base                                        |                        |       |
|        | d. three-eighth of the total height above the base                                |                        |       |
| (vi)   | If a body is in equilibrium, we may conclude that                                 | Î                      | COI   |
|        | a. No force is acting on the body                                                 |                        |       |
|        | b. The resultant of all the forces acting on it is zero                           |                        |       |
|        | c. The moments of the forces about any point is zero                              |                        |       |
|        | d. Both (b) and (c)                                                               |                        |       |
|        |                                                                                   |                        |       |

| (vii)  | Equation of motion of a particle is S=2t <sup>3</sup> - t <sup>2</sup> -2 where S is meters and t in seconds. Acceleration of the particle after 1 sec. will be  a. 8m/s <sup>2</sup> b. 9m/s <sup>2</sup> c. 10m/s <sup>2</sup> d. 5m/s <sup>2</sup>            | 1       | CO3   |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| (viii) | The linear velocity of a rotating body is given by the relation a. $v = r \cdot \omega$ b. $v = r/\omega$ c. $v = \omega/r$ d. $\omega^2/r$                                                                                                                      | 1       | CO3   |
| Carl   | where $r = Radius$ of the circular path, and $\omega = Angular$ velocity of the body in radians/s                                                                                                                                                                |         |       |
| (ix)   | The moment of inertia of a circular section of diameter (d) is given by the relation  a. $\frac{n}{16}d^4$ b. $\frac{n}{32}d^4$ c. $\frac{n}{64}d^4$ d. $\frac{n}{96}d^4$                                                                                        | - 1     | CO2   |
| (x)    | The centre of gravity of an equilateral triangle with each side (a) is from any of the three sides.  a. $\frac{a\sqrt{3}}{2}$ b. $\frac{a\sqrt{2}}{3}$ c. $\frac{a}{2\sqrt{3}}$ d. $\frac{a}{3\sqrt{2}}$                                                         | 1       | CO2   |
| (xi)   | Centre of gravity of a thin hollow cone lies on the axis at a height of:  a. one-fourth of the total height above base b. one-third of the total height above base c. one-half of the total height above base d. three-eighth of the total height above the base | 1       | CO2   |
|        | GROUP – B (Short Answer Type Questions) Answer any <i>three</i> from the following: 3×5=15                                                                                                                                                                       |         |       |
| 2. a.  | State Lami's Theorem.                                                                                                                                                                                                                                            | Marks 2 | CO No |
| b.     | A smooth sphere of weight W is supported by a string fastened to a point A on the smooth vertical wall, the other end is in contact with point B on the wall as shown in Fig.                                                                                    | 3       | CO1   |




3. A car moves along a straight line whose equation of motion is given by  $s = 12t + 3t^2 - 2t^3$ , where (s) is in metres and (t) is in seconds. calculate

5 CO4

- i. Velocity and acceleration at start, and
- ii. Acceleration, when the velocity is zero.
- 4. a. Find the centroid of an unequal angle section 100 mm  $\times$  80 mm  $\times$  20 mm.

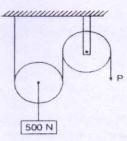
CO2



b. Distinguish between particle and rigid body.

CO1

5. a Define Angle of Friction and Coefficient of Friction.


3 CO2

b. Write down the Laws of Static Friction.

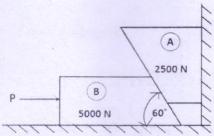
CO1

6. Using the principle of virtual work, determine the effort P required to hold the weight 500 N in equilibrium in a system of two frictionless pulleys of the same diameter as shown in Fig.

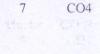
5 CO4

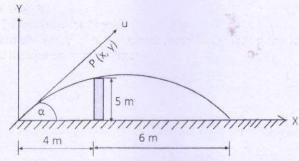


#### GROUP - C


#### (Long Answer Type Questions)

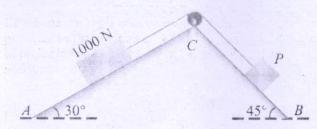
Answer any three from the following: 3×15=45


| Marks | CO No |
|-------|-------|
| 8     | COL   |


- 7. a. Referring to the figure below, the coefficients of friction are as follows
  - i) 0.25 at the floor
  - ii) 0.3 at the wall
  - iii) 0.2 between the blocks

Find the minimum value of a horizontal force P applied to the lower block that will hold the system in equilibrium.



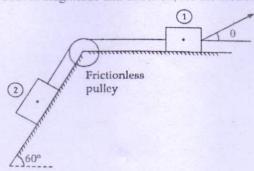

b. Determine the angle of projection and the velocity with which a projectile is projected so that it clears a wall of 5 m height at a distance 4 m from the point of projection and hits the ground at a distance 6 m beyond the wall as shown in figure.





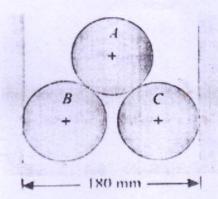
8. a. A weight of 1000 N resting over a smooth surface inclined at 30° with the horizontal is supported by an effort (P) resting on a smooth surface inclined at 45° with the horizontal as shown in Fig.





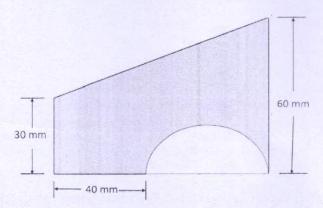

b. A motor car while rushing at a linear velocity of 20m/s, finds an obstacle on the middle of the road 75 metres ahead. He immediately applies brakes and stops the car 15 metres ahead of the obstacle. Calculate (i) acceleration & (ii) time required to stop the car.

#### 7 CO3

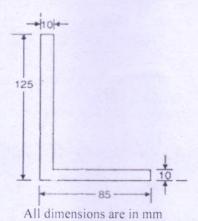

9. a. Two blocks of weight 200 N and 300 N and connected by a string passing over a frictionless pulley rest on rough surfaces; block of weight 200 N on horizontal surface and the other on an inclined surface as shown in figure. For both the surfaces the coefficient of friction = 0.25. Find out the minimum value of force, both in magnitude and direction, for the motion to impend.

8 CO1




b. Three cylinders weighting 100N each and 80 mm diameter are placed in a channel of 180 mm width as shown in figure. Determine the pressure exerted by (i) the cylinder A on B at the contact point, (ii) the cylinder B on the base and (iii) the cylinder B on the wall.

7 CO1




10. a. A semicircular area is removed from a trapezium as shown in figure below. Determine the centroid of the remaining area (shaded area)

CO2



b. Determine the moment of inertia of the L-section shown in the Figure about its centroidal axis parallel to the legs. Also find out the polar moment of inertia.



Write Short note: (Any three)  $3 \times 5 = 15$ a. Varignon's Theoremb. Parallel Axis Theorem 5 COI 5 CO<sub>2</sub> c. Polar Moment of Inertia 5 CO<sub>2</sub> d. Principle of Conservation of Momentum 5 CO3 e. Virtual Work 5 CO4