GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT 2021

FORMAL LANGUAGE AND AUTOMATA THEORY (Backlog) CS403

TIME ALLOTTED: 3 HOURS

FULL MARKS: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

Alls	swer any ten from the following, choosing the correct alternative of each ques	Marks	CO No
1. (i)	If R=P+RQ then which of the following is true?	1	CO1
	a) R=PQ*		
	b) R=QP*		
	c) R=P*Q		
	d) R=Q*P		
(ii)	The Regular Expression representing the set of all strings over	1	CO2
	$\Sigma = \{0,1\}$ starting with 0 and ending with 01 is		
	a) $0*(0+1)*01$		
	b) 0(0+1)*01		
	c) 001(0+1)*		
	d) (0+1)*001		
(iii)	Which of the following Regular Expressions over {a,b} denotes the	1	CO3
	set of all strings NOT containing baa as substring		
	a) a*(b*a)*		
	b) a*baba*		
	c) a*b*a*b*		
	d) a*(ba+b)*		
(iv)	The set of all strings over the alphabet $S = \{a, b\}$ (including ϵ) is	1	CO3
	denoted by		
	a) $(a + b)^*$		
	b) $(a + b)^{+}$		
	c) a+b+		
	d) a*b*		G0.2
(v)	If L1 and L2 are context free language and R a regular set, then	1	CO3
	which one of the languages below is not necessarily a context free		
	language?		
	a) L1 L2		
	b) L1 ∩ L2		
	c) L1 \cap R		
<i>(</i> ')	d) L1 U L2	1	000
(vi)	Which of the following statement is TRUE?	1	CO2
	a) Merger graph is a directed graph		
	b) Compatibility graph is a directed graph		
	c) Both merger graph and compatibility graph are directed graphs		
	d) Neither merger graph nor compatibility graph is directed		

B.TECH/CSE/EVEN/SEM-IV/CS403/R16/2021

1	(vii)	Input sequence of an information lossless machine can be determined from the knowledge of	1	CO3
		a) Only output sequenceb) Output sequence and initial state		
		c) Output sequence and initial state and final stated) Initial state and final state		
(viii)	Which is NOT a part of the mechanical diagram of 'Turing	1	CO3
		Machine'? a) Input tape		
		b) read-write headc) Finite Control		
		d) Stack		
	(ix)	Maximum no of states of a DFA converted from a NFA with n states is	1	CO3
		a) n		
		b) n ² c) 2 ⁿ		
		d) None of these		
	(x)	Language of finite automata is a) Type 0	1	CO4
		b) Type 1		
		c) Type 2 d) Type 3		
	(xi)	In Moore machine output is associated with	1	CO3
		a) present state onlyb) Next state only		
		c) Present state and input only		
	(xii)	d) input only The following transitions represent	1	CO4
,	(AII)	δ (q0, a, Z0) = (q0, aZ0)	1	CO4
		$\delta(q0, a, a) = (q0, aa)$		
		$\delta (q0, b, a) = (q1, \varepsilon)$ $\delta (q1, b, a) = (q1, \varepsilon)$		
		$\delta(q1, \epsilon, Z0) = (q1, \epsilon)$		
		a) acceptance of $L = \{a^nb^n, n \ge 1\}$ without empty stack b) acceptance of $L = \{a^nb^n, n \ge 0\}$ with empty stack		
		c) acceptance of $L = \{a^nb^n, n \ge 1\}$ with empty stack		
		d) acceptance of $L = \{a^n b^n, n \ge 0\}$ without empty stack		
		GROUP – B (Short Answer Type Questions)		
		Answer any <i>three</i> from the following: $3 \times 5 = 15$	Marks	CO No
2.	(a)	Construct a CFG for palindrome for binary numbers.	2	CO4
	(b)	Construct a CFG for $L = \{ a^n b^n c^m d^m \mid m, n > 0 \}$	3	CO4
3.	(a)	Define NFA.	2	CO3
	(b)	Design a Finite Automata (FA) that accepts set of all strings over Σ	3	CO3
4.	(a)	= {a,b} such that every string ends with aba. Design a DFA for RE (0+l)*(01)(011)*	3	CO3

(b) Consider a CFG with the following productions:

2 CO3

P: $S \rightarrow aSb \mid SS \mid \epsilon$

For the string **aabb**, how many derivation trees are possible? Explain.

5. Find out the regular expression corresponding to the following DFA:

5 CO3

6. Design a Turing machine for accepting a language $L(G)=\{a^n b^n\}$ n>=1.

5 CO5

GROUP - C (Long Answer Type Questions)

Answer any *three* from the following: 3×15=45

			Marks	CO No.
7.	(a)	What do you mean by equivalent states and k-equivalent states?	2	CO1
	(b)	Consider the following Machine:	13	CO1

+					
	PS	NS, z			
		\mathbf{I}_1	\mathbf{I}_2	I_3	I_4
	→ A	-	-	E,1	-
	В	C,0	A,1	B,0	-
	С	C,0	D,1	-	A,0
	D	-	E,1	В, -	-
	E	B,0	-	C, -	B,0

Draw the Merger Graph.

Draw the Compatibility Graph.

Find the minimal machine equivalent to the above machine.

8. (a) Draw the DFA equivalent to the following NFA. 6 CO3

(b) State the differences between Mealy and Moore machine.

3 CO1

(c) Minimize the following Mealy Machine.

	NS	S, z
PS	x = 0	x = 1
A	B, 1	H, 1
\boldsymbol{B}	F, 1	D, 1
C	D, 0	E, 1
D	C, 0	F, 1
\boldsymbol{E}	D, 1	C, 1
\boldsymbol{F}	C, 1	C, 1
\boldsymbol{G}	C, 1	D, 1
H	C, 0	A, 1

9. (a) What is information lossless machine?

$\hat{}$	$\alpha \alpha \alpha$
• ,	(11)
_	CO2

CO₂

CO₃

CO₃

6

(b) Consider the following Machine:

PS	NS, z		
13	x=0	x=1	
→ A	A,0	В,0	
В	C,0	D,0	
С	D,1	C,1	
D	R 1	A 1	

For the above machine determine whether it is lossless or lossy. If it is lossless of finite order, determine its order.

- (c) Prove that $L = \{w \mid w \text{ is a palindrome over } \{0, 1\} \text{ is not regular.}$
- (d) Write regular expression for the language such that every string will have at least one 'a' followed by at least one 'b'
- 10 (a) Define CFG and write down its properties. 4
 - (b) What is parse tree?

1 CO3

2

- (c) Consider the grammar $G = (V_n, V_t, P, S)$, where
 - $V_n = \{S\} V_t = \{a, b, c\}$
 - $P: S \rightarrow aSa$
 - $S \rightarrow bSb$
 - $S \rightarrow c$

Find out the language for this CFG.

(d) Consider the following grammar with production rule $P: S \rightarrow aA, S \rightarrow b/\in$ 3 CO4

Remove the ∈-production from the above grammar.

(e) Design a PDA for the language L = {ww^R | w ∈ {a,b}⁺}. Show the instantaneous descriptions (IDs) for the string **abba** for this language L(w) = {ww^R | w ∈ {a,b}⁺}.

11 Write short notes on any *three* from the following: $3 \times 5 = 15$. (a) Chomsky classification of grammar 5 CO4

(b) Halting problem of Turing Machine 5 CO5

(c) Push-down Automata 5 CO5

(d) Left-most and Right-most Derivation 5 CO3

(e) Ambiguity in grammar 5 CO3