GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

FORMAL LANGUAGE AND AUTOMATA THEORY IT305

TIME ALLOTTED: 3Hours

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: 10×1=10

1. i)	The format: A->aB refers to which of the following?	Marks	CO No CO4
	a) Chomsky Normal Form	1	204
	b) Greibach Normal Form		
	c) Backus Naur Form		
	d) None of the mentioned		
ii)	The logic of pumping lemma is a good example of	1	CO2
	a) The Pigeon-hole Principle		
	b) The Divide and Conquer technique		
	c) Recursion		
	d) Iteration		
iii)	Which among the following are incorrect regular identities?	1	CO3
	a) εR=R		
	b) ε*=ε		
	c) Φ*=ε		
	d) RΦ=R		
iv)	A Shift Register is	1	CO3
	a) Mealy m/c		
	b) Turing m/c		
	c) Moore m/c		
	d) All of these		
v)	The solution of the equation R=Q+RP is	1	CO2
	a) R=QP*		
	b) P=RQ*		
	c) R=Q*P		
	d) None of the above		
vi)	In Moore machine if the input string is of length n then output string is of length -	-1	CO2
	a) n		
	b) n/2		
	c) n+1		
	d) 2n		

B.TECH/IT/ODD/SEM-III/IT305/R21/2022

vii)	b) A giver	n grammar is reg n grammar is not er two regular ex	gular t regular	quivalent or n	ot	1	CO2
viii)	A grammar G=6 forms: B->aC B->a a) Ambiguable Regulace Non Re	uous r	if e	very producti	on taken one of the two	1	CO3
		of the mentioned					
ix)	a) Accept b) Rejecto	or only or/rejector		device		1	CO5
x)	There are	tuples in f	inite state mac	hine.		1	CO4
xi)	a) {x∈ {0,1}b) x∈ {0,1}c) {x∈ {0,1}	the following lo, 1} * x is all bin x is all binary, 1} * x is all bin , 1} x is all bin	ary number wi number with ary number wi	th even length even length} th odd length]			CO2
xii)	a) Transb) Statesc) all of					1	COI
		(Sh	GROU ort Answer T		16)		
		Answer a	ny three from	the following:	3×5=15		
(a)	Convert the fol	lowing Moore n	nachine into M			Marks 3	CO No CO1
	STATE	a=0	a=1	OUTPUT			
	$\rightarrow q_1$	q_1	q_2	0			
	q ₂	91	q ₃	0			
	q ₃	q ₁	q ₃	221 01	1 5 16 10	2	COL
(b)	Convert the fol PRESENT STATE → q ₀		o an equivalen		that q ₃ is Final State)	2	COI
	9 ₁	93	- 40, 42				
	q_2	-	q ₃				
	*0-	O.	O2				

B.TECH/IT/ODD/SEM-III/IT305/R21/2022

Check the Definiteness of the following m/c, if definite, find out its order

5	CO2

PS	NS,Z	
	X=0	X=1
A	С	В
В	Е	F
C	A	F
D	Е	В
Е	С	D
F	Е	F

(a) 4. Consider the following CFG:

5.

7. (a)

CO₁

 $S \rightarrow aaB, A \rightarrow bBb/\epsilon, B \rightarrow Aa$.

Find the parse tree for the string "aabbababa" What is Ambiguous grammar?

5

(b)

CO₃

Construct a minimum state automaton equivalent to a DFA whose transition table is

CO₁

given below (where q3 and q4 are two final states):

Present	Next State	
State	a=0	a=1
$\rightarrow q_0$	q ₁	q_2
q_1	q_4	q_3
q_2	q ₄	q_3
q_3	q ₅	q ₆
q_4	q ₇	q ₆
95	q ₃	q ₆
q ₆	96	q ₆
q ₇	q ₄	q ₆

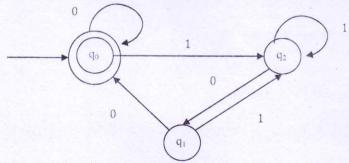
State Arden's Theorem. (a)

2 CO3

(b) Define Kleen's Star and Positive Closure with example

3 CO3

GROUP - C


(Long Answer Type Questions)

Answer any three from the following: 3×15=45

Marks CO No

Construct the regular expression corresponding to the state diagram given below:

CO3 4

(b) Define Left factoring & Left recursion with proper example.

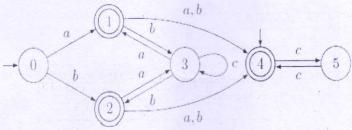
CO1

(c) Convert the following grammar to GNF

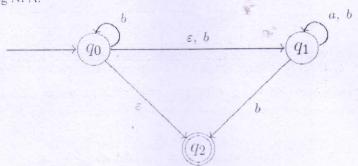
CO4

S→AB, $A \rightarrow BS/a$ B→SA/b

B.TECH/IT/ODD/SEM-III/IT305/R21/2022


8. (a) Find the equivalence class partition of the machine shown below:

0	CO
9	(()
,	002


PRESENT	NEXT STATE, z		
STATE	x=0	x=1	
A	E,0	D,1	
В	F,0	D,0	
С	E,0	B,1	
D	F,0	B,0	
E	C,0	F,1	
F	B.0	C,0	

(b) Show a standard form of the corresponding reduced machine for the above machine 6 CO4

9. (a) Construct the equivalent DFA from the NFA given below. Write down the 8 CO2 transition table for both the automata.

(b) Show the ε- closures from the following. Then Remove ε-transition from the 7 CO2 following NFA.

10. (a) Find the CFG for the given Language: 5 CO5

 $L=\{x\in\{0,1\}^*|\text{number of zeroes in }x=\text{number of one's in }x\}$ (b) Construct a push down automata for the language $L=\{ww^R\mid w\in\{a,b\}^*\}$ 6 CO3

(c) Using Pumping Lemma check whether $L=\{a^n b^n \mid n \ge 1\}$ is regular or not. 4 CO3

11. Write short notes on any three of the followings: 3x5=15

(a) Ambiguity and Inherent Ambiguity 5 CO4
(b) Turing machine 5 CO1

(b) Turing machine 5 CO1
(c) Pumping lemma for Regular Set 5 CO2

(c) Pumping lemma for Regular Set 5 CO2
(d) Classification of languages and their relations 5 CO2

(d) Classification of languages and their relations 5 CO2
(e) Compatibility Graph 5 CO3