GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

MATHEMATICS-III

M301

TIME ALLOTTED: 3HR

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

		GROUI -A		
		(Multiple Choice Type Questions)		
		Answer any ten from the following, choosing the correct alternative of each	question:	$10 \times 1 = 10$
			Marks	CO No
1.	1)	The function $f(z)=\bar{z}$ is	1	CO4
		a) an essential singularity at z=0		
		b) a pole of order 4 at z=0		
		c) a simple pole at z=0		
		d) no singularity at z=0		
i	ii)	$e^{-\rho^2}$	1	CO3
		The value of the integral $\int_C \frac{e^z}{(z-2)^2} dz$ where $C: z-2 = 1$ is traversed		
		in the counter clockwise sense, is		
		a) $\pi i e^2$		
		a) $-is^2$		
		b) -nte		
		$c)$ $2\pi i e^2$		
		b) $-\pi ie^2$ c) $2\pi ie^2$ d) $2\pi i$.		
	iii)	If the random variable X has the Binomial distribution with parameters	1	CO2
		n and p, then the mean and variance are respectively		
		a) np and np(1-p)		
		b) n and np		
		c) np and np		
		d) np and np ²		
iv	iv)	The distribution for which mean and variance are equal is	1	CO4
		a) Poisson		
		b) Binomial		
		c) Normal		
		d) None		

- CO₂ The order of the pole z = 0 of the function $f(z) = \frac{\cos z}{z^3}$ is

 - b) 2
 - c) 3
 - d) 4

vi)	If $f(x)$ is an odd function, then $F(f(x))$ is given by	1	CO2
	a) $F(s) = 2F_s(s)$		
	b) $F(s) = 2iF_s(s)$		
	c) $F_s(s) = 2F(s)$		
	d) $F_s(s) = 2iF(s)$		
vii)	The function $f(z) = \frac{e^{z^2}}{z^4}$ has	1	CO1
	 a) an essential singularity at z = 0. b) a pole of order 4 at z = 0. c) a simple pole at z = 0. d) no singularity at z = 0. 		
/iii)	The Fourier coefficient b_n of the function $f(x) = x^2, -\pi \le x \le \pi$ is	1	CO5
	a) $\frac{2\pi^3}{3}$		
	b) $(-1)^n \frac{4}{3}$		
	c) 0 d) none of these		
ix)	The period of the function $f(x) = \sin 2\pi x$ is	1	COI
	a) $\frac{1}{2}$		
	b) 1		
	c) 0		
	d) $\frac{1}{3}$		
x)	If two events A and B are independent then a) $P(A \cup B) = P(A) + P(B)$	1	CO2
	b) $P(A \cup B) = P(A) \cdot P(B)$		
	c) $P(A \cap B) = P(A) + P(B)$		
	d) $P(A \cap B) = P(A) \cdot P(B)$		
xi)	X has normal distribution with s.d. 2 ad z is standard normal variate. If X=9.6 implies z=-0.9, then the mean of X is a) 11	1	CO5
	b) 11.4		
	c) 12 d) 13		

xii)	If X is normally distributed with zero mean and unit variance, then $E(X^2)$ is	1	CO4
	a) 1		
	b) 2 c) 8		
	d) 20 GROUP – B		
	(Short Answer Type Questions)		
	(Answer any three of the following)	$3 \times 5 = 15$	CON
2.	Expand f(x)=x in Fourier Series on the interval $-\pi \le x \le \pi$.	Marks 5	CO No
3.	Prove that $\lim_{z\to 0} \frac{\overline{z}}{z}$ does not exist.	5	CO4
4.	If a random variable has a Poisson distribution such that $P(1)=P(2)$, find i) mean of the distribution ii) standard deviation. iii) $P(X=4)$	5	CO2
5.	A variable X has the following density function	5	CO4
	$f(x) = \frac{x}{2}, 0 \le x \le 1$		
	$=\frac{1}{2}$, $1 < x \le 2$		
	Find the mean and variance and also find $E\{(X-1)^2\}$		
6.	Solve by method of separation of variable $\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial t}$ where $u(0, t) = 8e^{-3t}$.	5	CO3
	GROUP - C		
	(Long Answer Type Questions) (Answer any <i>three</i> of the following)	3 x 15 = 45	
	(Allswer ally three of the following)	Marks	CO No
7. a)	Find the Fourier series of $f(x) = x , -\pi < x < \pi$. Hence deduce that	9	CO5
	$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}.$		
b)	e^{-ax}	6	CO4
	Find Fourier sine transform of $\frac{e^{-ax}}{x}$		
8. a)	Evaluate $\int_0^{2\pi} \frac{dt}{1+a^2+2acost}$, $0 < a < 1$.	5	CO3
b)	If $f(z)$ is analytic, prove that	5	CO3
	$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$		
c)	Evaluate: $\oint_C \frac{e^z}{(z^2 + \pi^2)^2} dz$, where C is the circle $ z = 4$	5	CO2

B.TECH/ECE/ODD/SEM-III/M301/R21/2022

9. a)	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, subject to the conditions $u(0,y) = u(1,y) = u(x,0) = 0$,	9	CO4
	$u(x,a) = \sin \frac{\pi x}{l} x$		
b)	A random variable X has the following probability mass function X: 0 1 2 3 4 5 6 7 P(X):0 k 2k 2k 3k k² 2k² 7k²+k i) Determine k. ii) Find P(X > 5), P(2 < X < 6) iii) Obtain the probability distribution F(x)	6	CO3, CO4
10. a)	Show that the function u=cos x cos hy is harmonic function.	4	CO4
b)	If the weekly wages of 10000 workers in a factory follows normal distribution with mean and s.d. Rs. 70 and Rs. 5 respectively, find the expected number of workers whose weekly wages are i)between Rs. 66 and Rs. 72. Ii) less than Rs. 66 iii) more than Rs. 72.	7	CO4
c)	Find the mean and variance of a Binomial variate X with parameter μ .	4	CO3
11 \		0	002
11. a)	Expand the function $f(z)=(z^2-1)/(z+2)(z+3)$ when i) $IZI<2$ ii) $2 iii) IZI>3$	8	CO3
b).	Given $\int_0^\infty f(x) \cos ax dx = 1 - a$, $0 < a < 1$ = 0, a>1	7	CO4
	Find f(x). Hence evaluate $\int_0^\infty \frac{\sin^2 x}{x^2} dx$		