GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2021

NUMERICALMETHODS (Backlog) M(CS)401

TIME ALLOTTED: 3HR

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

		Marks	CO No.
1. (i)	In Simpson's 1/3 rule, the portion of curve is replaced by	1	CO1
	(a) Straight line		
	(b) Circular path(c) Parabolic path		
	(d) none of these.		
(ii)	Which of the following true?	1	CO2
,	(a) $\Delta^n x^n = (n+1)!$		
	(b) $\Delta^n x^n = n!$		
	$(c) \Delta^n x^n = 0$		
	$(d) \Delta^n x^n = n$.		
(iii)	Number of significant digits of 0.00001234	1	CO2
	(a) 9		
	(b) 4		
	(c) 8		
(iv)	(d) none of these .	1	CO1
(iv)	In trapezoidal rule of finding $\int_{0}^{b} f(x) dx$, the function $f(x)$ is	1	COI
	approximated by		
	(a) linear segment		
	(b) parabola		
	(c) circular sector		
	(d) part of ellipse		

CO₁

- (v) 1 CO₃ If $f(x) = \frac{1}{x^2}$, then divided difference f(a, b) is (a) $\frac{(a+b)}{(ab)^2}$ (b) $-\frac{(a+b)}{(ab)^2}$ (c) $\frac{1}{a^2 + b^2}$ (d) $\frac{1}{a^2} - \frac{1}{h^2}$ (vi) Newton-Raphson method fails when 1 CO₁ (a) f'(x) = 1(b) f'(x) = 0(c) f'(x) = -1(d) f''(x) = 0. (vii) Which of the following is not true (the notations have their usual 1 CO₃ meanings)? (a) $\Delta \equiv E - I$ (b) $\frac{\Delta}{\nabla} \equiv \Delta + \nabla$ (c) $\Delta \nabla \equiv \Delta - \nabla$ $(d)\nabla \equiv I - E^{-1}$ In Gauss-elimination method, the given system of equation by 1 CO₁ AX = B is converted to another system UX=y, where U is
- (viii)
 - (a) diagonal matrix
 - (b) null matrix
 - (c) identity matrix
 - (d) upper triangular matrix.
- Lagrange's interpolation formula deals with arguments which are (ix) 1
 - (a) Equispaced
 - (b) Unequispaced
 - (c) Both (a) and (b)
 - (d) None of these.
- The percentage error in approximation $\frac{4}{3}$ to 1.3333 is 1 CO₂ (x)
 - (a) 0.0025%
 - (b) 25%
 - (c) 0.000025%
 - (d) 0.25%

(xi)
$$\Delta^2(y_1)$$
 may be expressed as which of the following terms? 1 CO3

(a) $(y_3 - 3y_2 + 3y_1 - y_0)$
(b) $(y_2 - 2y_1 + y_0)$
(c) $(y_3 - 3y_2 + 3y_1 + y_0)$
(d) None of these

(xii) Runge-kutta method has a truncation error, which is of the order of

(a) h^2
(b) h^4
(c) h^5
(d) none of these.

GROUP – B

(Short Answer Type Questions)

(Answer any three of the following) $3x5 = 15$

2. Evaluate $\int_1^3 \frac{x dx}{x^2 + 3}$ by trapezoidal rule of integration, taking 6 equal subintervals and hence find the value of $\log_e \sqrt{3}$ correct to 4 decimal places.

3. Solve by Euler's method the following differential quation for $\sqrt{2}$ 5 CO3

 $\sqrt{2}$ 4. Construct Newton-Raphson's iteration formula for finding $\sqrt{2}$ 5 CO2

Hence find $\sqrt{27}$ correct to 4 decimal places.

5. Find the absolute, relative and relative percentage error in $\sqrt{2}$ computation of $\sqrt{2}$ correct to 4 decimal places.

6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 5 CO2

 $\sqrt{2}$ 1. $\sqrt{2}$ 1. $\sqrt{2}$ 2. $\sqrt{2}$ 3. $\sqrt{2}$ 4. $\sqrt{2}$ 3. $\sqrt{2}$ 5 CO2

 $\sqrt{2}$ 1. $\sqrt{2}$ 1. $\sqrt{2}$ 3. $\sqrt{2}$ 2. $\sqrt{2}$ 4. $\sqrt{2}$ 3. $\sqrt{2}$ 4. $\sqrt{2}$ 5 CO2

 $\sqrt{2}$ 4. $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 6. $\sqrt{2}$ 6. Using Crank-Nicholson's method, solve $\sqrt{2}$ 7. $\sqrt{2}$ 6. $\sqrt{2}$ 9. $\sqrt{2}$ 7. $\sqrt{2}$ 9. $\sqrt{2}$

CO₃

CO₃

8

GROUP – C

(Long Answer Type Questions)

(Answer any *three* of the following) $3 \times 15 = 45$

		Marks	CO No.
7. a)	Solve the system of equations by LU factorization method:	9	CO2

$$x_1 + x_2 - x_3 = 2$$

$$2x_1 + 3x_2 + 5x_3 = -3$$

$$3x_1 + 2x_2 - 3x_3 = 6$$

b) Find the value of
$$\sqrt{2}$$
 correct up to 4 decimal places from the following table:

x:	1.9	2.1	2.3	2.5	2.7
\sqrt{x} :	1.3784	1.4491	1.5166	1.5811	1.6432

8. a) Find
$$y(1.315)$$
 from the following table

#*								
	X:	1.0	1.1	1.2	1.3	1.4	1.5	1.6
	y :	1.5431	1.6685	1.8107	1.9709	2.1509	2.3524	2.5775
_								

By using Stirling's formula correct to four decimal places.

b) Compute
$$y(0.2)$$
 by Runge Kutta method of fourth order with 7 CO3

$$h = 0.1$$
 for the differential equation $\frac{dy}{dx} + y = x^2$ with $y(0) = 1$.

9. a) Compute one root of
$$3x - \cos x - 1 = 0$$
, correct to two decimal places 6 CO2 by Regula Falsi method.

$$10x + y - z = 12$$

 $2x + 10y - z = 1$
 $2x + 2y - 10z = 14$

correct to two decimal places.

10.a) Solve by Euler's modified method the following differential 7 CO3 equation for x=0.02 taking step length h=0.02,
$$\frac{dy}{dx} = x^2 + y$$
, y=1

when x=0,correct upto 3 decimal places.

b) Compute y(0.4) by Milne's Predictor Corrector method from the equation
$$\frac{dy}{dx} = xy + y^2$$
 correct upto 3 decimal places. Given that $y(0)=1,y(0.1)=1.1169,y(90.2)1.2773,y(90.30)=1.5040.$

$$A = \begin{pmatrix} 4 & -2 & 1 \\ -1 & 5 & -2 \\ 1 & 1 & 3 \end{pmatrix}, b = \begin{pmatrix} 2 \\ 4 \\ 6 \end{pmatrix}$$

by using Successive Over Relaxation (SOR) method, with value $\boldsymbol{w} =$

.5 (Relaxation parameter) and initial point $x^{(0)} = (1 \ 2 \ 1)^T$.

- Compute the following integration $\int_{0}^{1} \frac{1}{1+x^2} dx$, by Romberg method taking length of intervals 1, 0.5, 0.25, 0.125 correct upto five decimal places
- 8 CO3