GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2021

NUMERICAL METHODS M(FT)401

TIME ALLOTTED: 3HR

(d) part of ellipse

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP – A

(Multiple Choice Type Questions)

	A	nswer any ten from the following, choosing the correct alternative of each	question: 10:	×1=10
			Marks	CO No.
1.	(i)	Newton Raphson method fails when	1	CO1
		(a) $f'(x)=1$		
		(b) $f'(x) = -1$		
		(c) $f'(x)=0$		
		(d) None of These		
	(ii)	Which of the following relation is false	1	CO1
		(a) $\Delta - \nabla \equiv \Delta \nabla$		
		(b) $E^{-1} \equiv \mathbf{I} - \nabla$		
		(c) $\Delta + \nabla \equiv \Delta / \nabla$		
		(d) None of These		
	(iii)	Bisection method fails when	1	CO2
	, ,	(a) $f(a)f(b)=0$ (b) $f(a)f(b)<0$		
		(c) both (a) and (b) (d) None of These		
	(iv)	Gauss Seidel method is	1	CO1
	(11)	(a) direct method	1	001
		(b) indirect method		
		(c) iterative method		
		(d) None of These		
	(v)	Gauss Elimination method is	1	CO1
		(a) direct method		
		(b) indirect method		
		(c) iterative method		
		(d) None of These		
			1	CO1
		In Trapezoidal rule of finding $\int f(x) dx$, $f(x)$ is approximated		
		by		
		(a) linear segment		
	(vi)	(b) parabola		
	\ - <i>J</i>	(c) circular sector		

B.TECH/FT/EVEN/SEM-IV/M(FT)401/R18/2021

 $1/3^{\text{rd}}$ rule of finding $\int_{a}^{b} f(x) dx$, f(x) is (vii) 1 CO₁ In Simpson's approximated by (a) linear segment (b) parabola (c) circular sector (d) part of ellipse An other name of Regula- Falsi method is 1 (viii) CO₁ (a) Tangent method (b) Root method (c) Method of False position (d) None of These (ix) Round off to the 4 significant digits of the number 7.103531 CO₂ 1 (a) 7.103 (b) 7.104 (c) 7.105 (d) none of these (x) Degree of precession of Trapezoidal Rule of Integration is 1 CO₁ (a) 1 (b) 2 (c)3(d) 41 CO₂ (xi) $\Delta(\frac{1}{x})$ is equal to (a) $\frac{1}{x(x+h)}$ (b) $\frac{1}{x+h}$ (c) $-\frac{h}{x+h}$ (d) $-\frac{h}{x(x+h)}$ GROUP - B

GROUP – B (Short Answer Type Questions)

Answer any *three* from the following: $3 \times 5 = 15$

2. Find f(1.02) by Newton's forward interpolation formula from the table Marks CO No. CO3

X	1.00	1.10	1.20	1.30
f(x)	0.8415	0.8912	0.9320	0.9636

	В.ТІ	ECH/FT/EVEN/	SEM-IV/M(FT)401	/R18/2021		
3.	Evaluate $\int_{1}^{3} \frac{xdx}{x^2 + 3}$ by Simpson's 1/3	rule, taking 6	5 equal	CO2		
4.	subintervals Solve the differential equation $\frac{dy}{dx} = (1 - y), y(0) = 0 \text{ at } x=0.1, 0.2.$	by Euler	method 5	CO3		
5.	Write down the approximate representation	n of $\pi(=\frac{22}{})$ corr	ect to	CO2		
	four significant figures and the find absolutely percentage error.					
6.	6. Using the following table, find find $f(3.5)$ correct upto two decimal places 5					
	x 0 1 2	3 4				
	f(x) 41 43 47	53 61				
	GROU (Long Answer T Answer any <i>three</i> from t	ype Questions)	5=45 Marks	CO No.		
7. a)	(a) From the following table, find by Lagrange's formula, the value of y when x=102.					
	x 93.0 96.2 100.0 y 11.38 12.80 14.70					
b)	Compute one root of $\sin x = 10(x-1)$, con	rrect to two decim	nal 7	CO2		
8.a)	places by Regula Falsi method. For finding the square root of ' a ' ($a > 0$)	on 7	CO3			

	places by Regula Falsi method.		
8.a)	For finding the square root of ' a ' ($a > 0$), derive the Newton	7	CO3
	Raphson iteration formula $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{2}), n = 0, 1, 2, 3, \dots$		

 $x_{n+1} = \frac{1}{2}(x_n + \frac{1}{x_n}), n = 0, 1, 2, 3,$

Hence find $\sqrt{2}$, correct to five significant figures. Solve by Euler's modified method the following differential 8 CO3 b) equation for x=0.02 taking step length h=0.01,

$$\frac{dy}{dx} = x^2 + y, \text{ y=1 when x=0.}$$

Compute y(0.4) by Runge Kutta method of fourth order for the 9.a) 8 CO₂ differential equation $\frac{dy}{dx} = xy + y^2$, y(0) = 1, taking h=0.1

Estimate the value of f(1.5) & f(7.5) using Newton's b) 7 CO3 forward & backward interpolation formula respectively from the following data:

X	1	2	3	4	5	6	7	8
f(x)	1	8	27	64	125	216	343	512

B.TECH/FT/EVEN/SEM-IV/M(FT)401/R18/2021

7

8

5

CO3

CO3

CO₂

10.a) Apply Newton's divided formula to compute the value of y for x=0.72, from the following table correct to six decimal places.

X	0.62	0.68	0.70	0.73	0.75
y=f(x)	0.6604918	0.7336304	0.7585837	0.7965858	0.8223167

b) Solve the system of equations by Gauss Seidel method:

$$10x - 5y - 2z = 3$$

$$4x - 10y + 3z = -3$$

$$x + 6y + 10z = -3$$

Correct to four significant figures.

11.a) Solve the system of equations by Gauss Elimination method:

$$3x_1 + 9x_2 - 2x_3 = 11$$

$$4x_1 + 2x_2 + 13x_3 = 24$$

$$4x_1 - 2x_2 + x_3 = -8$$

Correct to four significant figures.

- b) Compute one positive root of $x + \ln x 2 = 0$, correct to four 5 CO2 decimal places by method of Newton Raphson.
- Compute y(1.3) by Runge Kutta method of fourth order for the 5 CO2 differential equation $\frac{dy}{dx} = xy$, y(1) = 1, taking h=0.1