GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT 2021

NUMERICAL METHODS AND STATISTICS (Backlog) M(CSE)401

TIME ALLOTTED: 3HR

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable GROUP-A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

			Marks	CO No
1.	(i)	Which of the following method does not always guarantee convergence? (a) Regula Falsi method (b) Bisection method (c) Newton Raphson method (d) None of These	1	CO1
	(ii)	Median of the set {5,8,7,20,13,3,11} is (a) 7.5 (b) 7 (c) 8 (d) 20	1	CO1
	(iii)	Number of significant digits of 0.0012031 is (a) 6 (b) 5 (c) 7 (d) 4	1	CO2
	(iv)	The 5 th order forward difference of 5 th degree polynomial is [take h=1] (a) 24 (b) 120 (c) 720 (d) 0	1	CO1
	(v)	Newton Raphson method has order of convergence (a) 1 (b) 2 (c) 3 (d) None of these	1	CO3
	(vi)	Degree of precision of Simpson's 1/3 rd Rule of Integration is (a) 1 (b) 2 (c) 3 (d) 4	1	CO1

B.TECH/CSE/EVEN/SEM-IV/M(CSE)401/R16/2021

((vii)	Lagrange Interpolation formula is applicable if nodes are (a) Equispaced	1	CO2			
		(b) Un equispaced					
		(c) Both equispaced and un equispaced(d) None of these					
((viii)	Trapezoidal rule of integration is applicable when the	1	CO1			
		number of equal subintervals is (a) 12					
		(b) 13					
		(c) 11					
	(ix)	(d) All of these Correlation Coefficient lies in	1	CO1			
	(IX)	(a) (-1,1)	1	COI			
		(b) [-1,1]					
		(c) [0,1]					
	()	(d) None of these	1	CO1			
	(x)	Euler method for ODE has a truncation error of the order of	1	CO1			
		(a) h^3					
		(b) h ⁶					
		(c) h^2					
	(i)	(d) h ⁵	1	CO2			
	(xi)	E is equivalent to (a) e^{hD}	1	CO3			
		(a) e (b) e^{-hD}					
		(b) ε (c) Δ ∇					
		(d) None of these					
	(xii)	Gauss elimination method is	1	CO1			
		(a) direct method					
		(b) indirect method					
		(c) iterative method					
		(d) None of These GROUP – B					
		(Short Answer Type Questions)					
	Answer any <i>three</i> from the following: $3 \times 5 = 15$						
			Marks	CO No			
2.		Compute one root of $x^3 - 5x - 7 = 0$, correct to two	5	CO3			
		decimal places using regula falsi method. Given that root lies in [2,3]					
3.		Prove that $\Delta \nabla \equiv \Delta - \nabla$	5	CO2			
4.		Prove that the value of the correlation coefficient (r) will lie in between -1 to 1.	5	CO2			
5.			5	CO3			
		Evaluate $\int_{0}^{1} \frac{dx}{x^2 + 1}$ using Simpson's $1/3^{rd}$ rule of					
		integration, taking 6 equal subintervals correct to 3					
		decimal places.					

6. Find mean, variance and standard deviation of first 10 5 CO₃ natural numbers. GROUP - C (Long Answer Type Questions) Answer any *three* from the following: 3×15=45 Marks CO No Solve the following system of equation by LU 8 7. CO₃ (a) factorization method 2x - 3y + 10z = 3, -x + 4y + 2z= 20,5x + 2y + z = -12Solve the system of equations using Gauss Seidel 7 (b) CO₃ method, correct to 2 decimal places: $5x_1 + 2x_2 + x_3 = 8$ $2x_1 + 10x_2 + 3x_3 = 15$ $3x_1 + 2x_2 + 14x_3 = 19$ 8. (a) Find the value of f(1.6) correct up to 2 decimal places 8 CO₃ from the following table (using Newton's Forward Interpolation Formula): x: 1 5 f(x)1.19 1.31 1.55 1.89 1.99 7 CO₃ (b) Compute y(2.1) by Runge Kutta method of fourth order for the differential equation $\frac{dy}{dx} = xy$, y(2) = 2, take h = 0.19. 8 (a) CO₃ Compute one positive root of $x^x + 2x - 2 = 0$ correct to two decimal places by method of bisection. Given that the root lies in [0.5,1](b) Use Newton Raphson method to compute a root of 7 CO₃ $x\sin x + \cos x = 0$, correct to 3 decimal places. Take x0 = 2.510. (a) Find the regression lines of y on x and x on y for the 7 CO₃ sample 2 6 10 X 2 8 16 19 22 Fit a straight line to the following data 8 (b) CO₃ 29 6 9 16 21 Find correlation coefficient from the following table 5 11. CO₃ (a) \bar{x} 1 2 3 5 y 2 7 25 61 (b) Find median from the following frequency distribution 7 CO₃ 5-10 Class 10-15 15-20 20-25 25-30 Frequency 9 17 19 10 CO₂ (c) 3 $\rho = \sqrt{b_{xy}Xb_{yx}}$ Prove that