GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2021

PHYSICS-II PH(ECE)401

TIME ALLOTTED: 3HR

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any *ten* from the following, choosing the correct alternative of each question: $10 \times 1 = 10$

 (i) In Quantum mechanics a particle is free if it moves in a region where PE is a. Constant or zero 	1	CO1
b. varies with distance		
c. varies with time		
d. zero		
(ii) Ampere's circuital law is valid for	1	CO1
a. varying current		
b. static field		
c. alternating currentd. harmonic field		
	1	CO2
a. $\psi(x) = Ae^x$	•	202
b. $\psi(x) = Ae^{-x}$		
$\varphi(x) = Ae$		
c. $\psi(x) = Ae^x$		
c. $\psi(x) = Ae^{x^2}$ d. $\psi(x) = Ae^{-ax^2}$		
	1	CO1
a. 1-D structure		
b. 2-D structure		
c. 0-D structure		
d. Bulk	1	002
(v) If E ₁ be the energy of the ground state of a one dimensional potential box of length L and E ₂ be the energy of the ground state	1	CO3
when the length of the box is halved, then		
a. $E_2=2$ E_1		
b. $E_2 = E_1$		
c. $E_2=4 E_1$		
d. $E_2=3 E_1$		
	1	CO2
states obeying BE statistics. The numbers of microstates are		
a. 6 b. 9		
c. 3		
d. 2		

B.TECH/ECE/EVEN/SEM-IV/PH(ECE)401/R18/2021

(vii)	The expectation value $\langle x \rangle$ for a one dimensional potential box of length L in the ground state is	1	CO2
	a) $\frac{L}{4}$		
	b) $\frac{L}{a}$		
	· Z		
	c) $\frac{L}{8}$		
<i>(</i> ••••)	d) 0	4	G0.1
(viii)	Does a charge at rest establish a magnetic field?	1	CO1
	a. Yes b. No		
	c. cannot be concluded		
	d. never		
(ix)	The number of possible arrangements of two fermions in 3 cells is	1	CO1
	a. 9		
	b. 6		
	c. 3		
	d. 1	4	G02
(x)	At the top of the band "E-K" graph is	1	CO3
	a. Parabolicb. Horizontal		
	c. Elliptical		
	d. None		
(xi)	Commutator bracket of of [x, p] is	1	CO2
,	a. +iħ		
	b iħ		
	c1		
	d. +1		~~
(xii)	The flux through each turn of a 100 cm coil is $(t^3-2t)\times 10^{-3}$ Wb,	1	CO2
	where t is in second. The induced emf at $t = 2$ second is a. 1 V		
	a. 1 V b1 V		
	c. 4 mV		
	d. 0.4 V		
	GROUP – B		
	(Short Answer Type Questions) Answer any <i>three</i> from the following: 3×5=15		
		Marks	CO No.
(a)	Fermi level is an actual energy or any hypothetical level? Justify your answer with Fermi Dirac Distribution function at T=0 K	3	CO3
(b)	Plot Fermi Dirac Distribution function at $T > 0$ K and interpret the action of an intrinsic semiconductor at $T > 0$ K	2	CO3
(a)	If the electric field at some point is given by $\vec{E} = \frac{1}{\epsilon_0}$ (îx+ĵy-2kz),	3	CO2
	then calculate the charge density there.		
	Can you identify the medium		
(b)	Express Faraday's laws of e.m.f induction in differential form.	2	CO1
(a)	If any scalar function is denoted by,	3	CO3
	$\varphi = 3x^2y - y^3z^2$. Then find gradient of the scalar function at the point (1,-2,-1)		

2.

3.

4.

B.TECH/ECE/EVEN/SEM-IV/PH(ECE)401/R18/2021

	(b)	What is "Quantum Dot"? Why are they called 'artificial atom'?	2	CO1,CO 2
5.	(a)	Find the expectation value of x for the wave function given by $\psi(x) = A \exp(-x^2 / a^2 + ikx)$.	2	CO3
	(b)	What is the potential felt by an electron in a solid due to the presence of positive ion? Show graphically the nature of the periodic potential inside the solid. Explain the region of maximum potential energy and minimum potential energy.	3	CO1,CO4
6.	(a)	Explain the term electric flux. What are the dimension and unit of it?	3	CO1
	(b)	For an electric potential $V = (x^2 + y^2 + z^2)$, calculate the electric field at $(1,1,1)$.	2	CO2
		GROUP – C		
		(Long Answer Type Questions)		
		Answer any <i>three</i> from the following: $3 \times 15 = 45$		
			Marks	CO No.
7.	(a)	Compare between conduction current and Displacement current.	2	CO1
	(b)	A capacitor is made with two infinitely long conducting cylinders of radii a and b (a>b) with vacuum in the intervening space. The inner cylinder is grounded and the outer cylinder has a charge	5	CO3
		density σ . Solve this boundary – value problem to find the electric potential in the space between the cylinders.		
	(c)	Explain the working of Nicol as a polariser with the help of a neat diagram. Two polarizers are crossed to each other. One of them is then rotated through 30°. Calculate the percentage of incident	8	CO3
8.	(a)	unpolarized light that will pass through the optical system. One dimensional motion of a particle confined in a potential is given by	7	CO2
		V(x) = 0 for $0 < x < a $ and		
		$= \infty $ for $x < 0$ and $x > a$		
		The ground state wave function of the above particle is given by		
		$\Psi(x) = A \sin \frac{\pi x}{a} .$		
		a) Find out the normalization constant 'A'.		
	(1.)	b) Find out the expectation value of x for the above state.	_	G0.1
	(b)	Write down Gauss's law in electrostatics and derive its differential form.	5	CO1
	(c)	Write down the physical significance of Maxwell's equations in free space.	3	CO3
9.	(a)	Three particles each of which can be in one of ϵ , 2ϵ , 3ϵ , 4ϵ energy states have total energy 6ϵ . Find all possible number of distributions of the particles in the energy states if the particles obey	6	CO3
		(i) M-B statistics		
		(ii) R-F statistics		

(ii) B-E statistics

B.TECH/ECE/EVEN/SEM-IV/PH(ECE)401/R18/2021

(iii) F-D statistics

	(b)	Apply F-D statistics to find total number of free electrons in a metal at 0 ⁰ K temperature.	5	CO3
	(c)	What are bosons and fermions? Give examples	4	CO2
10.	(a)	What is "Free electron gas model"? What are the postulates made by Lorentz and Drude in developing free electron gas model?	5	CO1, CO2,CO4
		In case of electron conduction in metal, what are the forces acting on the electron? How does drift velocity is reached?		
	(b)	Find out a relationship between resistivity and temperature for a metal	5	CO3
	(c)	Explain the changes in electrical properties of a metal if dimension is reduced and the metal becomes a nanomaterial.	5	CO4
11.	(a)	Show that $\nabla^2 \left(\frac{1}{r}\right) = 0$ when $r \neq 0$. Use spherical coordinate system.	3	CO2
	(b)	Show that the electric field $\vec{\mathbf{E}} = \hat{\mathbf{i}} yz + \hat{\mathbf{j}} zx + \hat{\mathbf{k}} xy$ is solenoidal as well as conservative.	9	CO1
	(c)	Do you practically encounter this type of field? Justify. State &Explain Brewster's law. What happens to it for polished metallic reflector?	3	CO3