GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT

2022

SEMICONDUCTOR PHYSICS PH(IT)301

TIME ALLOTTED: 3Hours

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

(Multiple Choice Type Questions)

Answer any ten from the following, choosing the correct alternative of each question: 10×1=10

Marks CO No

- 1. i) Which one of the following functions is an eigen function of the operator $\frac{d^2}{dx^2}$?
 - a. xb. x^2
 - U. A
 - c. e^{-x^2}
 - d. cos x
 - ii) If E₁ be the energy of the ground state of a one dimensional potential box of length L and E₂ be the energy of the ground state when the length of the box is halved, then
 - a. $E_2 = 2E_1$
 - b. $E_2 = E_1$
 - c. $E_2 = 4E_1$
 - d: $E_2 = 3E_1$
 - iii) Spin of "photon" particle

1 CO1

- a. integer multiple of 'h'
 - b. half integer multiple of 'h'
 - c. spin is not defined
 - d. zero
- iv) Which of the following theories cannot be explained by classical theory?

CO3

- a. Electron theory
- b. Lorentz theory
- c. Photo-electric effect
- d. Classical free electron theory
- v) If Ψ_1 and Ψ_2 are two solutions of Schrodinger Wave equation then which of the following is also a solution?
 - a. Ψ1/Ψ2
 - b. 4142
 - с. Ψ2/Ψ1
 - d. $\Psi_1 + \Psi_2$

B.TECH/IT/ODD/SEM-III/PH(IT)301/R21/2022

			001
vi)	According to Sommerfeld theory of electron conduction in metal, electrons obey	1	COI
	a. M.B statistics		
	b. F.D. statistics		
	c. B.E. statistics		
	d. does not obey any statistics		
vii)	Two operators, α and β , are said to commute when	1	CO2
	a. $\alpha = \beta$		
	b. $\alpha + \beta = 0$		
	c. $\alpha\beta = \beta\alpha$		
	d. $\alpha^2 = \beta^2$		
viii)	At the top of the band "E-K" graph is	1	CO3
	a. parabolic		
	b. horizontal		
	c. elliptical		
	d. none		
ix)	Phase space is a	1	CO3
(A)	a. 3 Dimensional Space		
	b. 4 Dimensional Space		
	c. 5 Dimensional Space		
	d. 6 Dimensional Space		
X)	What should be the biasing of the LED?	1	CO3
	a. Forward bias		
	b. Reverse bias		
	c. Forward bias than Reverse bias		
	d. No biasing required		
xi)	Semiconductors possess which type of bonding?	1	CO3
	a. Metallic		
	b. Covalent		
	c. Ionic		
	d. Magnetic		
	GROUP – B		
	(Short Answer Type Questions)		
	(Answer any three of the following) $3 \times 5 = 15$		
		Marks	CO No
2. a)	If the wave function $\psi(x)$ of a quantum mechanical particle is given by	3	CO3
	$\psi(x) = a \sin \frac{n \prod x}{L} \text{ for } 0 \le x \le L$		
	= 0 otherwise		
	then find the value of x where the probability of finding the particle is		
	maximum.		
b)	Show that the first excited state of a free particle in a cubicle box has three-fold	2	CO2
	degeneracy.		

B.TECH/IT/ODD/SEM-III/PH(IT)301/R21/2022

3. a)	Evaluate $[L_x, L_y]$.	3	CO4
b)	What do you mean by quantum tunnelling?	1	COI
c)	Cite one example of solid state device which operates based on this quantum tunnelling.	1	CO1
4. a)	Write down the matrix forms of the Pauli spin matrices.	3	CO4
b)	Give differences between bit and qubit.	2	CO3
5. a)	Find the following inner product (a b) where $a > = {2 \choose 3}$ and $b > = {2i \choose 3}$.	3	CO3
b)	Draw an analogy of this inner product with vector dot product. Find the vector outer product (Tensor product) of the following state vectors (2) (2i)	2	CO3
	$ a\rangle = {2 \choose 3}$ and $ b\rangle = {2i \choose 3}$		
6. a) b)	The side of a 2D square lattice is 4Å. Find the value of first Brillouin zone. Calculate the corresponding energy of the free electron for that momentum.	3 2	CO2
0)	Calculate the corresponding energy of the free electron for that momentum.	2	CO2
	GROUP – C		
	(Long Answer Type Questions)		
	(Answer any <i>three</i> of the following) $3 \times 15 = 45$	Marks	CO No
7. a)	Discuss qualitatively the Kronig-Penny model.	5	CO2
b)	Classify the following into bosons and fermions: photons, protons, electrons, helium atoms.	2	CO3
c)	Write short note on III-V semiconductor.	3	CO3
d)	Evaluate $[x, p_x]$ and $[x, p_x^2]$.	5	CO2
8. a)	State and explain Bloch theorem.	3	CO2
b)	What is the main feature of Sommerfeld theory?	2	CO2
c)	Calculate the energy of the lowest three levels for an electron in an infinite onedimensional potential well.	7	CO3
d)	If the electrical conductivity of a metal at at 20° C is $2.872 \times 10^{-8}\Omega$.m, find the thermal conductivity of the metal. The Lorentz number of the specimen is 2.01×10^{-8} W. Ω . K ⁻² .	3	CO2
9. a)	What are the postulates made by Lorentz and Drude in developing free electron gas model?	2	CO1
b)	Write down the limitations of free electron theory.	2	CO3
c)	What was the correction made by Sommerfeld over the classical Lorentz-Drude theory?	2	CO1
d)	Starting from the equation found from the "Kronig-Penney model", show that the energy of particle becomes discrete if the barrier strength becomes infinite.	3	CO4
e)	Show that the effective mass of an electron in a crystal is inversely proportional to the second derivative of the E-k curve.	4	CO3
f)	Discuss the conditions when effective mass of an electron becomes positive, negative and infinity.	2	CO2

B.TECH/IT/ODD/SEM-III/PH(IT)301/R21/2022

10. a)	Write down short notes on i. NOT-gate ii. Hadamard gate iii. Phase shift gate	6	CO4
b)	The normalized wave function of a particle is $\varphi(x) = \sqrt{\frac{3}{\pi}} \cos x$ where	4	CO3
	$\frac{-\pi}{2} < x < \frac{\pi}{2}$. Find expression for the expectation value of particle's momentum.		
c)	Draw the position of Fermi level of (i) intrinsic, (ii) n type and (iii) p type semiconductor. Explain how Fermi level depends on carrier concentration and temperature.	5	CO3
11.	Write Short note: (Any three)	3x5=15	
a)	Quantum wires	5	COI
b)	Quantum dots	5	CO1
c)	CNT	5	CO1
d)	LED	5	CO1
e)	CNOT gate	5	CO1