GURU NANAK INSTITUTE OF TECHNOLOGY

An Autonomous Institute under MAKAUT 2022

THERMODYNAMICS AND KINETICS FT301

TIME ALLOTTED: 3Hours

FULL MARKS:70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable

GROUP-A

(Multiple Choice Type Questions)

	Answer any <i>ten</i> from the following, choosing the correct alternative of each questions	ion: 10×1	=10
	This wer that the following, endoung the contest attendance or each question	Marks	CO No
1. i)		1	CO3
(v)	a) f _i /P b) f _i /T c) f _i d) f _i /XP		002
ii)	For refrigeration at a temperature of 278.15K & 303.15K in surroundings, the	1	COI
(V)	value of cop is a) 11.13 b) 13.13 c) 20.13 d) 15.13		
iij)	For Isobaric process a) $G/\delta T = P$ b) $\delta G/\delta T = P$ c) $\delta G/\delta T = S$ d) $\delta G/\delta T = -S$	1	CO1
iv)	The values of P ₁ ^{sat} and P ₂ ^{sat} are obtained from a) Raoult's law b) Henry's law c) Antoine equation d) Modified Raoult's law	1	CO2
v)	At bubble point a) vapour phase ceases to exist b) liquid phase ceases to exist c) both liquid & vapour phases co-exist d) none of these	1	CO2
vi)	The vapour-liquid equilibrium of a binary system can be better represented by a) T-X-Y diagram b) P-X-Y diagram c) P-T diagram d) all of these	1	CO2

B.TECH/FT/ODD/SEM-III/FT301/R21/2022

vii)		mango placed in a concentrated salt solution to prepare pickle,	1	CO2
	shrinks bed			
		it gains water due to osmosis		
		it loses water due to reverse osmosis		
1010		it gains water due to reverse osmosis		
	d)	it loses water due to osmosis		
viii)		contains a solution of a substance 'A'. Precipitation of substance 'A'	1	CO2
	takes place	e when a small amount of 'A' is added to the solution. The solution		
	is			
	a)	saturated		
		supersaturated		
	c)	unsaturated		
	d)	concentrated		
ix)	A catalyst	alters, which of the following in a chemical reaction?	1	CO4
		Entropy		
	b)	Enthalpy		
		Internal energy		
		Activation energy		
x)	According	to kinetic theory of gases, the absolute zero temperature is attained	1	CO2
	when			
		Volume of gas is zero		
		Pressure of the gas is zero		
		Kinetic energy of the molecules is zero		
		Specific heat of gas is zero		
xi)	The specif	ic volume of water when heated from 0°C	1	CO2
		Increases steadily		
		Decreases steadily		
	c)			
	d)			
xii)	The expres	ssion for t _{1/2} for 2 nd order reaction, where the two reactants are	1	CO4
		$t_{1/2} = 1/k$		
		$t_{1/2} = 1/k$		
		$t_{1/2} = ka$		
		$t_{1/2} = 1/ka$		0.002
	u)	t 1/2 - 17Ka		
		GROUP - B		
		(Short Answer Type Questions)		
		(Answer any <i>three</i> of the following) $3 \times 5 = 15$	Manil	CON
2.	Prove that the chemical potential in different phases is equal at the same temperature and pressure.		Marks 5	CO No
3.	Explain bu	bble point and dew point with Raoult's Law.	5	CO3
٥.	Explain ou	core point and dew point with Radult's Daw.		003

B.TECH/FT/ODD/SEM-III/FT301/R21/2022

/ h.	(a. 16. c. 45. c.) - 16. c. 45. c. (a. 16. c.) - 16. c. (a. 16. c.)		
	Source in the sac of t		
	B.TECH/FT/ODD/SEM-III/I	FT301/R	21/2022
4.	Explain the PVT behavior of pure substance in Pressure vs. Temperature diagram and Pressure vs. Volume diagram.	5	COI
5.	With T-S curve define the different steps of vapour compression refrigeration cycle.	5	CO2
6.	Explain Collision theory with diagram.	5	CO4
	GROUP – C		
	(Long Answer Type Questions) (Answer any <i>three</i> of the following) $3 \times 15 = 45$		
7. a.	With proper diagrams differentiate between Claude and Linde liquefaction process.	Marks 7	CO No
b.	Consider refrigeration at a temperature level of T_C =263.15K with a heat source available at atmospheric pressure (T_H =373.15K). Calculate the COP of the absorption refrigeration cycle if the temperature of the surrounding is 303.15K.	3	CO2
10 c.	Write the differences between vapour compression and absorption refrigeration cycle.	5	CO2
8. a.	614/shr		
b.	Explain Antoine vapoure-pressure equation. Binary system acetonitrile (1)/ nitromethane (2) confirms closely to Raoult's law. Vapour Pressures for the pure species are given by the following Antoine equations:	3 12	CO3
		1	
	Prepare a graph showing P Vs. X_1 & P vs Y_1 for a temp of 348.15 K (75°C) P_1^{Sat} and P_2^{Sat} are in kPa and T is in °C.		
9. a.	Explain Henry's law.	5	CO3
b.	Assuming that carbonated water contains CO_2 (1) and $H_2O(2)$. Determine the composition of the vapour and liquid phases in a sealed can of "soda" and the pressure exerted on the can at 10 °C (283.15K). Henry's constant for CO_2 in water at 10 °C is about 990 bar. (given P_2 sat=0.01227bar at 283.15K)	10	CO3
10 0	What is the cignificance of V value in VI FO	2	001
10. a. b.	What is the significance of K value in VLE? In a system of methanol(1)/ methyl acetate (2) the following equations are given:	3	CO3
	$\ln \gamma_1 = A x_2^2$, $\ln \gamma_2 = A x_1^2$, where $A = 2.771 \text{-} 0.00523 \text{T}$ and $\ln P_1^{\text{Sat}} = 16.59158 - 3643.31/(\text{T-}33.424)$ $\ln P_2^{\text{Sat}} = 14.25326 - 2665.54/(\text{T-}53.424)$		
c.	Calculate P and Y_i for T-318.15 K and $x_i = 0.25$ Prove that, $Cp - Cv = R$	4	COI
11. a.	The rate constant of a reaction at 400 and 200K are 0.04 and 0.02 s ⁻¹ respectively. Calculate the value of activation energy.	7	CO4
b.	The decomposition of Cl_2O_7 at 500K in the gas phase to Cl_2 and O_2 is a first-order reaction. After 1 minute at 500K, the pressure of Cl_2O_7 falls from 0.08 to 0.04 atm. Calculate the rate constant in s ⁻¹ .	8	CO4